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Abstract

Support Vector Data Description (SVDD) is a
machine learning technique used for single class
classification and outlier detection. The SVDD
model for normal data description builds a min-
imum radius hypersphere around the training
data. A flexible description can be obtained by
use of Kernel functions. The data description is
defined by the support vectors obtained by solv-
ing quadratic optimization problem which mini-
mizes the volume enclosed by the hypersphere.
The time required to solve the quadratic pro-
gramming problem is directly related to the num-
ber of observations in the training data set. This
leads to very high computing time for large train-
ing datasets. In this paper we propose a new it-
erative sampling-based method for SVDD train-
ing. The method incrementally learns the train-
ing data set description at each iteration by com-
puting SVDD on an independent random sample
selected with replacement from the training data
set. The experimental results indicate that the
proposed method is extremely fast and provides
near-identical data description as compared to
training using the entire data set in one iteration.
Proposed method can be easily implemented as a
wrapper code around the core module for SVDD
training computations either in a single machine
or a multi-machine distributed environment.

1. Introduction
Support Vector Data Description (SVDD) is a machine
learning technique used for single class classification and
outlier detection. SVDD technique is similar to Support
Vector Machines and was first introduced by Tax and Duin
(Tax & Duin, 2004). It can be used to build a flexible
boundary around single class data. Data boundary is char-

acterized by observations designated as support vectors.
SVDD is used in domains where majority of data belongs
to a single class. Several researchers have proposed use of
SVDD for multivariate process control (Sukchotrat et al.,
2009). Other applications of SVDD involve machine con-
dition monitoring (Widodo & Yang, 2007; Ypma et al.,
1999) and image classification (Sanchez-Hernandez et al.,
2007).

1.1. Mathematical Formulation of SVDD

Normal Data Description:
The SVDD model for normal data description builds a
minimum radius hypersphere around the data.

Primal Form:
Objective Function:

minR2 + C

n∑
i=1

ξi, (1)

subject to:

∥xi − a∥2 ≤ R2 + ξi, ∀i = 1, . . . , n, (2)
ξi ≥ 0, ∀i = 1, ...n. (3)

where:
xi ∈ Rm, i = 1, . . . , n represents the training data,
R : radius, represents the decision variable,
ξi : is the slack for each variable,
a: is the center, a decision variable,
C = 1

nf : is the penalty constant that controls the trade-off
between the volume and the errors, and,
f : is the expected outlier fraction.

Dual Form:
The dual formulation is obtained using the Lagrange
multipliers.
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Sampling Method for SVDD Training

Objective Function:

max
n∑

i=1

αi(xi.xi)−
∑
i,j

αiαj(xi.xj), (4)

subject to:

n∑
i=1

αi = 1, (5)

0 ≤ αi ≤ C, ∀i = 1, . . . , n. (6)

where:
αi ∈ R: are the Lagrange constants,
C = 1

nf : is the penalty constant.

Duality Information:
Depending upon the position of the observation, the
following results hold good:

Center Position:
n∑

i=1

αixi = a. (7)

Inside Position:

∥xi − a∥ < R→ αi = 0. (8)

Boundary Position:

∥xi − a∥ = R→ 0 < αi < C. (9)

Outside Position:

∥xi − a∥ > R→ αi = C. (10)

The radius of the hypersphere is calculated as follows:

R2 = (xk.xk)−2
∑
i

αi(xi.xk)+
∑
i,j

αiαj(xi.xj). (11)

using any xk ∈ SV<C , where SV<C is the set of support
vectors that have αk < C.

Scoring:

For each observation z in the scoring data set, the distance
dist2(z) is calculated as follows:

dist2(z) = (z.z)− 2
∑
i

αi(xi.z) +
∑
i,j

αiαj(xi.xj).

(12)
The scoring dataset points with dist2(z) > R2 are desig-
nated as outliers.

The circular data boundary can include a significant
amount of space with a very sparse distribution of training
observations. Scoring with this model can increase the
probability of false positives. Hence, instead of a circular

shape, a compact bounded outline around the data is often
desired. Such an outline should approximate the shape of
the single-class training data. This is possible with the use
of kernel functions.

Flexible Data Description:

The Support Vector Data Description is made flexible by
replacing the inner product (xi.xj) with a suitable kernel
function K(xi, xj). The Gaussian kernel function used in
this paper is defined as:

K(xi, xj) = exp
−∥xi − xj∥2

2s2
(13)

where s: Gaussian bandwidth parameter.

The modified mathematical formulation of SVDD with ker-
nel function is as follows:

Objective function:

max

n∑
i=1

αiK(xi, xi)−
∑
i,j

αiαjK(xi, xj), (14)

Subject to:
n∑

i=1

αi = 1, (15)

0 ≤ αi ≤ C, ∀i = 1, . . . , n. (16)

The results 7 through 10 hold good when the kernel func-
tion is used in the mathematical formulation.
The threshold R2 is calculated as :

R2 = K(xk, xk)−2
∑
i

αiK(xi, xk)+
∑
i,j

αiαjK(xi, xj)

(17)

using any xk ∈ SV<C , where SV<C is the set of support
vectors that have αk < C.

Scoring:

For each observation z in the scoring dataset, the distance
dist2(z) is calculated as follows:

dist2(z) = K(z, z)−2
∑
i

αiK(xi, z)+
∑
i,j

αiαjK(xi, xj).

(18)
The scoring dataset points with dist2(z) > R2 are
designated as outliers.

1.2. Mathematical Formulation of One-class Support
Vector Machines (OCSVM)

The One-class Support Vector Machines (OCSVM) is a
one-class classification technique similar to the SVDD. In-
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stead of obtaining a bounding hypershpere around the train-
ing data set, the OCSVM algorithm finds the maximal mar-
gin hyperplane which best separates the training data from
the origin (Scholkopf et al., 1999). Similar to SVDD, the
OCSVM uses kernel functions to map training data set into
a higher dimensional feature space. The dual formulation
of OCSVM can be expressed as follows:

max
1

2

∑
i,j

αiαjK(xi, xj), (19)

Subject to:

l∑
i=1

αi = 1, (20)

0 ≤ αi ≤
1

νl
, ∀i = 1, . . . , l. (21)

where:
αi ∈ R: are the Lagrange constants,
ν: is a parameter that controls the trade-off between max-
imizing the distance of the hyperplane from the origin and
the number of data points contained by the hyperplane,
l: is the number of points in the training data set, and,
K(xi, xj): is the kernel function.
The Gaussian kernel function, which is used in this paper
is defined as:

K(xi, xj) = exp
−∥xi − xj∥2

2s2
(22)

where
s: Gaussian bandwidth parameter.

With Gaussian kernel function, the first term of the SVDD
objective function defined in equation (14) evaluates to 1.
Hence the OCSVM formulation defined in equation 19 to
equation 21 is similar to the SVDD formulation defined in
equation 14 to equation 16 when Gaussian kernel function
is used. Hence, it should be noted that, although, the dis-
cussion in the remainder of this paper is presented in the
context of SVDD, the sampling-based method can be used
equally well when solving a OCSVM problem.

2. Need for a Sampling-based Approach
As outlined in Section 1.1, SVDD of training data set is
obtained by solving a quadratic programming problem.
The time required to solve the quadratic programming
problem is directly related to the number of observations in
the training data set. The actual time complexity depends
upon the implementation of the underlying Quadratic
Programming solver. We used LIBSVM (Chang & Lin,
2011) to evaluate SVDD training time as a function of the
training data set size. Figure 1 shows processing time as
a function of training data set size for the two Donut data

set. Refer to Figure 3(c) for a scatterplot of two Donut
data. In Figure 1 the x-axis indicates the training data set
size and the y-axis indicates processing time in minutes.
As indicated in Figure 1, the SVDD training time is low
for small or moderately sized training data sets of size up
to 15,000 observations, but for larger data sets, SVDD
training time is extremely high.

Figure 1. SVDD Training Time: Two Donut data

There are applications of SVDD in areas such as process
control and equipment health monitoring where size of
training data set can be very large, consisting of few mil-
lion observations. The training data set consists of sensors
readings measuring multiple key health or process param-
eters at a very high frequency. For example, a typical air-
plane currently has ˜6,000 sensors measuring critical health
parameters and creates 2.5 terabytes of data per day. By
2020, this number is expected to triple or quadruple to over
7.5 terabytes (Ege, 2015). In such applications, multiple
SVDD training models are developed, each representing
separate operating mode of the equipment or process set-
tings. The success of SVDD in these applications require
algorithms which can train using huge amounts of training
data in an efficient manner.
To improve performance of SVDD training on large data
sets, we propose a new sampling based method. Instead of
using all observations from the training data set, the algo-
rithm computes the training data SVDD by iteratively com-
puting SVDD on independent random samples obtained
from the training data set. The method works well with ex-
tremely small sample sizes. We provide a criteria for con-
vergence. At convergence, the proposed method provides
a reasonable approximation of the data description that can
be obtained by using all training data set observations in a
single iteration.
The rest of the paper is organized as follows. Section 3
provides details of the proposed sampling-based iterative
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method. Results of training with the proposed method are
provided in section 4. The analysis of high dimensional
data is provided in Section 5. Results of testing sampling
method on random polygons is provided in section Sec-
tion 6. Finally, conclusions are provided in section 7.

3. Sampling-based Method
The Decomposition and Combination method of Luo
et.al.(Luo et al., 2010) and K-means Clustering Method
of Kim et.al.(Kim et al., 2007), both use sampling for fast
SVDD training, but are computationally expensive. The
first method by Lou et.al. uses an iterative approach and
requires one scoring action on the entire training data set
per iteration. The second method by Kim et.al. is a classic
divide and conquer algorithm. It uses each observation
from the training data set to arrive at the final solution.
Additional details about these methods are provided in
Appendix A.
In this section we describe our sampling-based method for
fast SVDD training. The method iteratively samples from
the training data set with the objective of updating a set of
support vectors called as the master set of support vectors
(SV ∗). During each iteration, the method updates SV ∗

and corresponding threshold R2 value and center a. As the
threshold value R2 increases, the volume enclosed by the
SV ∗ increases. The method stops iterating and provides a
solution when the threshold value R2, center a and hence
the volume enclosed by SV ∗ converges. At convergence,
the members of the master set of support vectors SV ∗,
characterize the description of the training data set. For all
test cases, our method provided a good approximation to
the solution that can be obtained by using all observations
in the training data set.
Our method addresses drawbacks of existing sampling
based methods proposed by Luo et.al.(Luo et al., 2010)
and Kim et.al.(Kim et al., 2007). In each iteration, our
method learns using very a small sample from the training
data set and overall uses a very small subset of the training
data set. The method does not require any scoring actions
while it trains.
The sampling method works well across different sample
sizes. The user is not required to make any decision
regarding the right sample size. It provides a better
alternative to SVDD training on one large sample from the
training data set, where establishing a right size, especially
with high dimensional data can be a challenge.

The important steps in this algorithm are outlined below:

Step 1: The algorithm is initialized by selecting a random
sample S0 of size n from the training data set of M ob-
servations (n ≪ M ). SVDD of S0 is computed to obtain

the corresponding set of support vectors SV0. The set SV0

initializes the master set of support vectors SV ∗. The iter-
ation number i is set to 1.
Step 2: During this step, the algorithm updates the master
set of support vectors, SV ∗ until the convergence criteria is
satisfied. In each iteration i, following steps are executed:

Step 2.1: A random sample Si of size n is selected and
its SVDD is computed. The corresponding support vec-
tors are designated as SVi.
Step 2.2: A union of SVi with the current master set of
support vectors, SV ∗ is taken to obtain a set S

′

i (S
′

i =
SVi

∪
SV ∗).

Step 2.3: SVDD of S
′

i is computed to obtain correspond-
ing support vectors SV

′

i , threshold value R2′

i and center
a

′

i. The set SV
′

i , is designated as the new master set of
support vectors SV ∗.

Convergence Criteria: At the end of each iteration i, fol-
lowing conditions are checked to determine if the conver-
gence criteria is satisfied. The algorithm stops iterating and
provides solution if convergence criteria is satisfied for t
consecutive iterations.

a) i = maxiter, where maxiter is the maximum number
of iteration; or
b) ∆ai ≤ ϵ∆ai−1, and;∥∥∥R2′

i −R2′

i−1

∥∥∥ ≤ ϵR2′

i−1

where ∆ai =
∥∥∥a′

i − a
′

i−1

∥∥∥ and ϵ is a constant

The pseudo-code for this method is provided in algo-
rithm 1. The pseudo-code uses following conventions:
1) Si ← SAMPLE(T, n) indicate data set Si obtained by
selecting random sample of size n from data set T .
2) δSi indicate SVDD computation on data set Si.
3) < SVi, R

2
i , ai >← δSi indicate the set of support vec-

tors SVi, threshold value R2
i and center ai obtained by per-

forming SVDD computations on data set Si.

As outlined in steps 1 and 2, the algorithm obtains the
final training data description by incrementally updating
the master set of support vectors SV ∗ and there by in
each iteration expanding the volume enclosed by the
support vectors. During each iteration, the algorithm first
selects a small random sample Si, computes its SVDD and
obtains corresponding set of support vectors, SVi. The
support vectors of set SVi are included in the master set
of support vectors SV ∗ to obtain S

′

i (S
′

i = SVi

∪
SV ∗).

The set S
′

i thus represents an incremental expansion of the
current master set of support vectors SV ∗. Since SVi is
set of support vectors of a very small random sample Si,
some members of SVi can be potentially ’inside’ the data
boundary characterized by SV ∗. The following SVDD
computation on S

′

i elimintes such ’inside’ points. The
corresponding set of support vectors, SV

′

i is designated as
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Algorithm 1 Sampling-based iterative method
Require: T (training data set) , n (sample size), conver-

gence criteria, s (Gaussian band width parameter), f
(fraction outliers) and t (required number of consecu-
tive observations satisfying convergence criteria ).

1: S0 ← SAMPLE(T, n)
2: < SV0, R

2
0, a0 >← δS0

3: SV ∗ ←SV0

4: i = 1
5: while (Convergence criteria not satisfied for t consec-

utive obs) do
6: Si ← SAMPLE(T, n)
7: < SVi, R

2
i , ai >← δSi

8: S
′

i ← SVi

∪
SV ∗.

9: < SV
′

i , R
2′

i , a
′

i >← δS
′

i

10: Test for convergence
11: SV ∗ ← SV

′

i

12: i = i+ 1
13: end while
14: return SV ∗

the new master set of support vectors SV ∗. During initial
iterations as SV ∗ gets updated, its threshold value R2′

i

increases and hence the volume enclosed by the master set
of support vectors continues to expand. At convergence,
the data description obtained using SV ∗ approximates
data description that can be obtained using all training data
observations in a single iteration.
Each iteration of the our algorithm involves two SVDD
computations and one union operation. The first SVDD
computation is fast since it is perfomed on a small sample
of training data set. For the remaining two operations, our
method exploits the fact that for most data sets, support
vectors computed using SVDD are typically a very small
fraction of input data set. Hence the union operation and
the scond SVDD computation both of which use sets of
support vectors as input, are fast as well. Overall, since all
three operations in our method are fast, time required to
obtain final solution is considerably less as compared to
using all observations.

3.0.1. MODIFIED SAMPLING ALGORITHM

A modification of sampling algorithm is provided in this
section. The modified algorithm is similar to the one out-
lined in section 3 except for step 2.1. In modified sampling
algorithm, during each iteration, multiple SVDD computa-
tions on independent random samples are pefrormed before
arriving at the set SVi, at the end of step 2.1. The important
steps in the algorithm are outlined below:
Step 1: The algorithm is initialized by selecting a random
sample S0 of size n from the training data set of M obser-

vations (n ≪ M ). SVDD of S0 is computed to obtain the
corresponding set of support vectors SV0. The set SV0 is
designated as the master set of support vectors SV ∗. The
iteration number i is set to 1.
Step 2: During this step, the algorithm updates the master
set of support vectors, SV ∗ until the convergence criteria is
satisfied. In each iteration i, following steps are executed:

Step 2.1: Obtain q independent samples Si1, Si2...Siq ,
compute their individual SVDD and obtain correspond-
ing set of support vectors SVi1, SVi2...SViq . Take union
of q sets of support vectors to obtain SVi where SVi =∪q

j=1 SVij . Step 2.2: A union of SVi with the current
master set of support vectors, SV ∗ is taken to obtain a set
S

′

i (S
′

i = SVi

∪
SV ∗).

Step 2.3: SVDD of S
′

i is computed to obtain correspond-
ing support vectors SV

′

i , threshold value R2′

i and center
a

′

i. The set SV
′

i , is designated as the new master set of
support vectors SV ∗.

Convergence Criteria: At the end of each iteration i, fol-
lowing conditions are checked to determine if the conver-
gence criteria is satisfied. The algorithm stops iterating and
provides solution if convergence criteria is satisfied for t
consecutive iterations.

a) i = maxiter, where maxiter is the maximum number
of iteration; or
b) ∆ai ≤ ϵ∆ai−1, and;∥∥∥R2′

i −R2′

i−1

∥∥∥ ≤ ϵR2′

i−1

where ∆ai =
∥∥∥a′

i − a
′

i−1

∥∥∥ and ϵ is a constant

The pseudo-code for this method is provided in algo-
rithm 2. The pseudo-code uses following conventions:
1) Si ← SAMPLE(T, n) indicate data set Si obtained by
selecting random sample of size n from data set T .
2) δSi indicate SVDD computation on data set Si.
3) < SVi, R

2
i , ai >← δSi indicate the set of support vec-

tors SVi, threshold value R2
i and center ai obtained by per-

forming SVDD computations on data set Si.

3.0.2. DISTRIBUTED IMPLEMENTATION

For extremely large training datasets, efficiency gains using
distributed implementation are possible. Figure 2 describes
SVDD solution using the sampling method outlined in sec-
tion 3 utilizing a distributed architecture. The training data
set with M observations is first distributed over p worker

nodes. Each worker node computes SVDD of its
M

p
obser-

vations using the sampling method to obtain its own master
set of support vectors SV ∗

i . Once SVDD computations are
completed, each worker node promotes its own master set
of support vectors SV ∗

i , to the controller node. The con-
troller node takes a union of all worker node master sets of
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Algorithm 2 Modified sampling-based iterative method
Require: T (training data set) , n (sample size), conver-

gence criteria, q (number of sample SVDD computa-
tions per iteration), s (Gaussian band width parameter),
f (fraction outliers) and t (required number of consec-
utive observations satisfying convergence criteria )

1: S0 ← SAMPLE(T, n)
2: < SV0, R

2
0, a0 >← δS0

3: SV ∗ ← SV0

4: i = 1
5: while (Convergence criteria not satisfied for t consec-

utive obs) do
6: while j ≤ q do
7: Sij ← SAMPLE(T, n)
8: < SVij , R

2
ij , aij >← δSij

9: if j = 1 then
10: SVi ← SVij

11: else
12: SVi ← SVi

∪
SVij

13: end if
14: j = j + 1
15: end while
16: S

′

i ← SVi

∪
SV ∗.

17: < SV
′

i , R
2′

i , a
′

i >← δS
′

i

18: Test for convergence
19: SV ∗ ← SV

′

i

20: i = i+ 1
21: end while
22: return SV ∗

support vectors, SV ∗
i to create data set S

′
. Finally, solu-

tion is obtained by performing SVDD computation on S
′
.

The corresponding set of support vectors SV ∗ are used to
approximate the original training data set description.

Figure 2. Distributed Implementation

4. Results
To test our sampling method, we experimented with three
data sets of known geometry: Banana-shaped, Star-shaped,
and a two Donut data. Figure 3(a)-3(c) illustrate these three
data sets. For each data set, we first obtained SVDD using
all observations. Table 1 summarizes the results.
For each data set, we varied the value of the sample size n

from 3 to 20 and obtained multiple SVDD using the sam-
pling method. For each sample size value, the total pro-
cessing time and number of iterations till convergence were
noted. Figure 4 and 5 illustrate the results. The vertical ref-
erence line indicates the sample size corresponding to the
minimum processing time. Table 2 provides the minimum
processing time, corresponding sample size and other de-
tails for all three data sets. Figure 7 shows the convergence
of threshold R2 for the Banana-shaped data trained using
sampling method.

Results provided in Table 1 and Table 2 indicate that our
method provides magnitude performance improvement
as compared to training using all observations in a single
iteration. The threshold R2 values obtained using the
sampling-based method are approximately equal to the
values that can be obtained by training using all obser-
vations in a single iteration. Although the radius values
are same, to confirm if the data boundary defined using
support vectors is similar, we performed scoring on a
200 × 200 data grid. Figure 8 provides the scoring results
for all data sets. The scoring results are similar.
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Data #Obs R2 #SV Time

Banana 11,016 0.8789 21 1.98 sec
Two Donut 1,333,334 0.8982 178 32 min

Star 64,000 0.9362 76 11.55 sec

Table 1. SVDD Training using full SVDD method

Data Sample Size No. of Iterations R2 #SV Time

Banana 6 119 0.8717 19 0.315
Two Donut 11 157 0.8967 37 0.285

Star 11 141 0.9317 44 0.284

Table 2. SVDD Results using Sampling Method

Note: In the remainder of this paper, we refer training
method using all observations in one iteration as full SVDD
method.

5. Analysis of High Dimensional Data
Section 4 provided comparison of our sampling method
with the alternate method which uses all observations in
the training data set. For two-dimensional data sets the per-
formance of sampling method can be visually judged us-
ing the scoring results. We tested the sampling method
with high dimensional datasets, where such visual feed-
back about classification accuracy of sampling method is
not available. We compared classification accuracy of the
sampling method with the accuracy of training with all ob-
servations. We use the F1-measure to quantify the classifi-
cation accuracy. (Zhuang & Dai, 2006). The F1-measure
is defined as follows:

F1 =
2× Precision× Recall

Precision + Recall
, (23)

where:

Precision =
true positives

true positives + false positives
(24)

Recall =
true positives

true positives + false negatives
. (25)

Thus high precision relates to a low false positive rate,
and high recall relates to a low false negative rate. We
chose the F1-measure because it is a composite measure
that takes into account both the Precision and the Recall.
Models with higher values of F1-measure provide a better
fit.

5.1. Analysis of Shuttle Data

In this section we provide results of our experiments with
Statlog (shuttle) dataset (Lichman, 2013). This is a high di-
mensional data consists of nine numeric attributes and one

class attribute. Out of 58,000 total observations, 80% of
the observations belong to class one. We created a training
data set of randomly selected 2,000 observations belonging
to class one. The remaining 56,000 observations were used
to create a scoring data set. SVDD model was first trained
using all observations in the training data set. The training
results were used to score the observations in the scoring
data set to determine if the model could accurately clas-
sify an observation as belonging to class one and the accu-
racy of scoring was measured using the F1-measure. We
then trained using the sampling-based method, followed
by scoring to compute the F1-measure again. The sample
size for the sampling-based method was set to 10 (num-
ber of variables + 1). We measured the performance of
the sampling method using the F1-measure ratio defined as
FSampling/FAllobs where FSampling is the F1-measure obtained
when the value obtained using the sampling method for
training, and FAllobs is the value of F1-measure computed
when all observations were used for training. A value close
to 1 indicate that sampling method is competitive with full
SVDD method. We repeated the above steps varying the
training data set of size from 3,000 to 40,000 in the incre-
ments of 1,000. The corresponding scoring data set size
changed from 55,000 to 18,000. Figure 9 provides the plot
of F1-measure ratio. The plot of F1-measure ratio is con-
stant, very close to 1 for all training data set sizes, pro-
vides the evidence that our sampling method provides near
identical classification accuracy as compared to full SVDD
method. Figure 10 provides the plot of the processing time
for the sampling method and training using all obsrvations.
As the training data set size increased, the processing time
for full SVDD method increased almost linearly to a value
of about 5 seconds for training data set of 40,000 observa-
tions. In comparison, the processing time of the sampling
based method was in the range of 0.24 to 0.35 sec. The re-
sults prove that the sampling-based method is efficient and
it provides near identical results to full SVDD method.
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(a) Banana-shaped data

(b) Star-shaped data

(c) Two donut data

Figure 3. Scatter plots

(a) Run time vs. sample size

(b) # iterations vs. sample size

Figure 4. Banana-shaped data
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(a) Run time vs. sample size

(b) # iterations vs. sample size

Figure 5. Star-shaped data

(a) Run time vs. sample size

(b) # iterations vs. sample size

Figure 6. Two Donut data
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Figure 7. Plot of threshold R2 - Banana shaped data (Sample size
= 6)

5.2. Analysis of Tennessee Eastman Data

In this section we provide results of our experiments with
high dimensional Tennessee Eastman data. The data was
generated using the MATLAB simulation code (Ricker,
2002) which provides a model of an industrial chemical
process (Downs & Vogel, 1993). The data was generated
for normal operations of the process and twenty faulty pro-
cesses. Each observation consists of 41 variables, out of
which 22 are measured continuously, on an average, every
6 seconds and remaining 19 sampled at a specified interval
either every 0.1 or 0.25 hours. We interpolated the 22 ob-
servations which are measured continuously using SAS R⃝

EXPAND procedure. The interpolation increased the ob-
servation frequency and generated 20 observations per sec-
ond. The interpolation ensured that we have adequate data
volume to compare performance our sampling method with
full SVDD method.
We created a training data set of 5,000 randomly selected
observations belonging to the normal operations of the pro-
cess. From the remaining observations, we created a scor-
ing data of 228,000 observations by randomly selecting
108,000 observations belonging to the normal operations
and 120,000 observations belonging to the faulty processes.
A SVDD model was first trained using all observations in
the training data set. The training results were used to score
the observations in the scoring data set to determine if the
model could accurately classify an observation as belong-
ing to the normal operations. The accuracy of scoring was
measured using the F1-measure. We then trained using the
sampling method, followed by scoring to compute the F1-
measure again. The sample size for the sampling based
method was set to 42 (number of variables + 1). Similar to
the Shuttle data analysis, we measured the performance of

(a) (b)

(a) (b)

(a) (b)

Full SVDD Method Sampling method

Figure 8. Scoring results. Above figures show results of scoring
on a 200x200 data grid. Light gray color indicates outside points
and black color indicates inside points. Figure (a) used full SVDD
method for training. Figure (b) used sampling method for train-
ing.
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Figure 9. F1-measure plot: Shuttle data. Sample size for sam-
pling method=10

Figure 10. Processing time plot: Shuttle data. Sample size for
sampling method=10

the sampling method using the F1-measure ratio defined as
FSampling/FAllobs where FSampling is the F1-measure obtained
when the value obtained using the sampling method for
training, and FAllobs is the value of F1-measure computed
when all observations were used for training. A value close
to 1 indicate that sampling method is competitive with full
SVDD method. We repeated the above steps varying the
training data set of size from 10,000 to 100,000 in the incre-
ments of 5,000. The scoring data set was kept unchanged
during each iteration. Figure 11 provides the plot of F1-
measure ratio. The plot of F1-measure ratio was constant,
very close to 1 for all training data set sizes, provides the
evidence that the sampling method provides near identical
classification accuracy as compared to full SVDD method.
Figure 12 provides the plot of the processing time for the
sampling-based method and the all obsrvation method. As
the training data set size increased, the processing time for

Figure 11. F1-measure ratio plot: Tennessee Eastman data. Sam-
ple size for sampling method=42

Figure 12. Processing time plot: Tennessee Eastman data. Sample
size for sampling method=42

full SVDD method increased almost linearly to a value of
about one minute for training data set of 100,000 observa-
tions. In comparison, the processing time of the sampling
based method was in the range of 0.5 to 2.0 sec. The results
prove that the sampling-based method is very efficient and
it provides near identical results as compared to full SVDD
method.

6. Simulation Study
In this section we measure the performance of Sampling
method when it is applied to randomly generated polygons.
Given the number of vertices, k,we generate the vertices of
a randomly generated polygon in the anticlockwise sense
as r1 exp iθ(1), . . . , rk exp iθ(k). Here θ(i)’s are the order
statistics of an i.i.d sample uniformly drawn from (0, 2π)
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and ri’s are uniformly drawn from an interval [rmin, rmax].
For this simulation we chose rmin = 3 and rmax = 5 and
varied the number of vertices from 5 to 30. We generated
20 random polygons for each vertex size. Figure 13 shows
two random polygons. Having determined a polygon we
randomly selected 600 points uniformly from the interior
of the polygon to construct a training data set. Then for
each polygon we found its bounding rectangle and divided
it into a 200× 200 grid. We then labeled each point on this
grid as an “inside” or an “outside” point to create the scor-
ing data set. We then fit SVDD on the training data set and
scored using the corresponding scoring data set and calcu-
lated the F1-measure. The process of training and scoring
was first performed using the all observation method, fol-
lowed by the sampling method. For sampling method we
used sample size of 5. We trained and scored each instance
of a polygon 10 times by changing the value of the Gaus-
sian bandwidth parameter, s. We used s values from the
following set.
s = [1, 1.4, 1.8, 2.3, 2.7, 3.2, 3.6, 4.1, 4.5, 5].
Similar to the analysis of shuttle data and Tennessee East-
man data, we measured the performance of the sampling
method using the F1-measure ratio.

The Box-whisker plots in Figure 14 to 16 summarizes the
simulation study results. The x- axis shows the number of
vertices of the ploygon and y-axis shows the F1-measure
ratio. The bottom and the top of the box shows the first
and the third quartile values. The ends of the whiskers
represent the minimum and the maximum value of the
F1-measure ratio. The diamond shape indicates the mean
value and the horizontal line in the box indicates the
second quartile.

6.1. Comaprison of Best Value of s

For each instance of a polygon, we looked at the best s
value, which provided the maximum F1 measure. The plot
in Figure 14 shows the plot of F1 measure ratio computed
using the maximum values of F1 measures. The plot shows
that F1-measure ratio is greater than ≈ 0.95 across all val-
ues of number of vertices. The F1 measure ratio in the top
three quartiles is greater than≈ 0.97 across all values of the
number of vertices. Using best possible value of s, the sam-
pling method provides comparable results with full SVDD
method.

6.2. Results Using Same Value of s

We evaluated sampling method against full SVDD method,
for the same value of s. The plots in Figure 15 illustrate
the results for different six different values of s. The plot
shows that F1-measure ratio is greater than 0.9 across
number of vertice and s. In Figures 15 (c) to (f), the

(a) Number of Vertices = 5

(b) Number of Vertices = 25

Figure 13. Random Polygons

Figure 14. Box-whisker plot: Number of vertices vs. Ratio of
max F1 measures
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top three quartiles of F1 measure ratio was consistently
greater than ≈ 1. Training using sampling method and full
SVDD method, using same s value, provide similar results.

6.3. Overall Results

Figure 16 provides summary of all simulation performed
for different polygon instances and varying values of s.
The plot shows that F1-measure ratio is greater than 0.9
across number of vertice. The F1 measure ratio in the top
three quartiles is greater than ≈ 0.98 across all values of
the number of vertices. The accuracy of sampling method
is comaprable to full SVDD method.



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Sampling Method for SVDD Training

(a)s=1 (b)s=1.4

(c)s=2.3 (d)s=3.4

(e)s=4.1 (f)s=5.0

Figure 15. Box-whisker plot: Number of vertices vs. F1 measure ratio for different s values
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Figure 16. Box-whisker plot: Number of vertices vs. F1 measure
ratio

7. Conclusion
We propose a simple sampling-based iterative method for
training SVDD. The method incrementally learns during
each iteration by utilizing information contained in the cur-
rent master set of support vectors and new information pro-
vided by the random sample. After a certain number of it-
erations, the threshold R2 value and the center a start to
converge. At this point, the SVDD of the master set of sup-
port vectors is close to the SVDD of training data set. We
provide a mechanism to detect convergence and establish a
stopping criteria.
The simplicity of proposed method ensures ease of imple-
mentation. The implementation involves writing additional
code for calling SVDD training code iteratively, maintain-
ing a master set of support vectors and implementing con-
vergence criteria based on threshold R2 and center a. We
do not propose any changes to the core SVDD training al-
gorithm as outlined in section 1.1
The method is fast. The number of observations used for
finding the SVDD in each iteration can be a very small frac-
tion of the number of observations in the training data set.
The algorithm provides good results with sample size as
small as m + 1, where m is the number of variables in the
training data set. Small sample size ensures that each itera-
tion of the algorithm is extremely fast.
The proposed method provides a fast alternative to tradi-
tional SVDD training method which uses information from
all observations in one iteration. In applications where
training data set is large, fast approximation is often desired
than obtaining exact description, which can be significantly
slower. Within the broader realm of Internet of Things
(IoT) we expect to see multiple applications of SVDD espe-
cially to monitor industrial processes and equipment health.
Such applications require fast periodic training using large

data sets, which can be performed very efficiently using our
sampling method outlined in this paper.

A. Appendix
A.1. Review of Existing Methods

A brief description of two methods which use sampling for
SVDD training is provided in this section.

A.1.1. DECOMPOSITION AND COMBINATION METHOD
OF LUO ET.AL.(LUO ET AL., 2010)

Let S denote the set of observations in the training dataset.
Step 1: Select a random sample of size m from S. Let this
sample be W1. Perform SVDD on W1. Let P1 denote the
corresponding set of support vectors and points enclosed
by the support vectors. Let X1 be the support vectors of
(W1, P1). Let V1=S\P1 denote the set of points which
belong to S and outside of P1. Let v1 denote number of
points in V1. If v1 ≤ m, then P1 is the final solution. If
v1 ≥ m then select a random set of m points from V1. Let
this set be W2.
Step 2: Perform SVDD on W2. Let P2 denote the
corresponding set of support vectors and points enclosed
by the support vectors. Let X2 be the support vectors of
(W2, P2).
Step 3: Construct set R as (X1 ∪X2). Perform SVDD on
R. Let P denote the corresponding set of support vectors
and points enclosed by the support vectors. Let Q denote
support vectors of (R,P ). Let V =S\P1 denote the set of
points which belong to S and outside of P . Let v denote
number of points in V . If v ≤ m, then (S, P ) is the final
solution. If v ≥ m then select a random set of m points
from V1. Let this set be W2.
Step 4: Repeat step 2-3 until solution is found.

This method involves combining SVDD results of
the random sample (W1) selected from training dataset
and a sample selected from data points which fall outside
the description (W2). To determine points outside the data
description, and obtain W2, training dataset S needs to be
scored using training results of W1. Until the solution is
obtained, each iteration involves one scoring action on the
entire training dataset. For large training data sets, multiple
scoring actions can make this method very slow.

A.1.2. K-MEANS CLUSTERING METHOD OF KIM
ET.AL.(KIM ET AL., 2007)

In this method, the training dataset of size N is first par-
titioned into k subsets using K-means clustering. For each
subset a local description using SVDD is obtained. Support
vectors of each subset are then combined to obtain, what
authors refer to as a working set. SVDD is then applied
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on the working set to obtain data description of the entire
training dataset. If α is the average number of support vec-
tors for each sub-problem’s description, the complexity of
the algorithm is expressed as:
O(kN) + kO((N/k)3) +O((αk)3)
where αk is the size of the working set.
This is a classic divide and conquer algorithm. Information
from each observation in the training dataset is utilized to
find solution. For large dense data sets, use of all observa-
tions is unnecessary and can make this method very slow.

A.2. Prior Art

Following table summarizes results of our prior art search.
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Paper Prior-
art

Reason

A Fast SVDD algorithm based on
decomposition and combination for
fault detection by Luo et. al.

No This method involves combining SVDD results of the
random sample selected from training dataset and a sam-
ple selected from data points which fall outside the de-
scription. To determine points outside the data descrip-
tion,training dataset needs to be scored once per iteration.
Our method does not involve scoring.

Fast support vector data description
using k-means clustering by Kim et.
al.

No This is a classic devide and conqure algorithm. It does
not involve sampling. The method does not provide any
convergence criteria.

Incremental SVDD training: Im-
proving efficiency of background
modelling in videos by Tavakkoli
et.al.

No Method works by iteratively updating a set of support
vectors. Method works only for two dimensional data
and it does not provide a convergence criteria.

Fast training of SVDD by extract-
ing boundary targets by Liang et. al.

No Method obtains solution by identifying a subset of train-
ing data which can potentially contain the support vec-
tors. This is a totally different approach than our method.

K-Farthest-Neighbors-Based con-
cept boundary determination for
support vector data description by
Xiao et.al.

No Method obtains solution by identifying a subset of train-
ing data which can potentially contain the support vectors
and identifying which cannot. This is a totally different
approach than our method.

Effective training set sampling
strategy for SVDD anomaly detec-
tion in hyperspectral imagery by
Ergul et. al.

No Method uses principal component analysis results to de-
cide if a data point should be part of the sample. Our
approach uses random sampling.

Table 3. Prior-art search summary
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A.3. Iterative solution using sampling method:

The development of final solution for the Banana-shaped
data set is illustrated below. Figure 17 shows several
plots indicating support vectors against the backdrop of
the training data set at the end of an iteration. The black
markers indicate the support vectors and the gray markers
indicate the training data points. The iteration number
and number of support vectors is indicated in each plot.
At lower iteration numbers the support vectors were in
the interior of the Banana-shape. As number of iterations
increased, the sampling method moved the the support vec-
tors towards the data boundary. At and near convergence,
the support vectors were primarily along the data boundary.
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(a)

(b)
Figure 17: Sampling Method Results

Gray points indicate training data obsevations. Black points indicate support vecotrs at the iteration end.
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(c)

(d)
Figure 17: Sampling Method Results

Gray points indicate training data obsevations. Black points indicate support vecotrs at the iteration end.
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(e)

(f)
Figure 17: Sampling Method Results

Gray points indicate training data obsevations. Black points indicate support vecotrs at the iteration end.
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(g)

(h)
Figure 17: Sampling Method Results

Gray points indicate training data obsevations. Black points indicate support vecotrs at the iteration end.
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