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Abstract: Because different patients may response quite differently to the same

drug or treatment, there is increasing interest in discovering individualized treat-

ment rule. In particular, people are eager to find the optimal individualized treat-

ment rules, which if followed by the whole patient population would lead to the

“best” outcome. In this paper, we propose new estimators based on robust regres-

sion with general loss functions to estimate the optimal individualized treatment

rules. The new estimators possess the following nice properties: first, they are

robust against skewed, heterogeneous, heavy-tailed errors or outliers; second, they

are robust against misspecification of the baseline function; third, under certain

situations, the new estimator coupled with pinball loss approximately maximizes

the outcome’s conditional quantile instead of conditional mean, which leads to

a different optimal individualized treatment rule comparing with traditional Q-

and A-learning. Consistency and asymptotic normality of the proposed estima-

tors are established. Their empirical performance is demonstrated via extensive

simulation studies and an analysis of an AIDS data.

Key words and phrases: Optimal individualized treatment rules; Personalized

medicine; Quantile regression; Robust regression.
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1 Introduction

Given the same drug or treatment, different patients may respond quite differently. Factors

causing individual variability in drug response are multi-fold and complex. This has raised

increasing interests of individualized medicine, where customized medicine or treatment is

recommended to each individual according to his/her characteristics, including genetic, phys-

iological, demographic, environmental, and other clinical information. The rule that applied

in personalized medicine to match each patient with a target treatment is called individual-

ized treatment rule (ITR), and our goal is to find the “optimal” one, which if followed by

the whole patient population would lead to the “best” outcome. For many complex diseases

such as cancer and AIDS, the optimal individualized treatment rule or regime is a dynamical

treatment process, involving a sequence of treatment decisions made at different time points

throughout the disease evolving course.

Q-learning (Watkins and Dayan, 1992; Murphy, 2005) and A-learning (Murphy, 2003;

Robins, 2004) are two main approaches for finding optimal dynamic individualized treatment

rules based on clinical trials or observational data. Q-learning is based on posing a regression

model to estimate the conditional expectation of the outcome at each time point, and then

applying a backward recursive procedure to fit the model. A-learning, on the other hand, only

requires modeling the contrast function of the treatments at each time point, is therefore more

flexible and robust to a model misspecification. See Schulte et al. (2014) for a complete review

and comparison of these two methods under various scenarios, in terms of the parameter

estimation accuracy and the estimation of expected outcomes. Q- and A-learning have good

performance when model is correctly specified but are sensitive to model misspecification. To

overcome this shortcoming, several “direct” methods have been proposed, which maximize

value functions directly instead of modeling the conditional mean. See Zhao et al. (2012);

Zhang et al. (2013) for example.

All existing methods for optimal individualized treatment rule estimation, including Q-

learning and A-learning, belong to mean regression as they estimate the optimal estimator by

maximizing expected outcomes. In the case of single decision point, Q-learning is equivalent

to the least-squares regression. Least-squares estimates are optimal if the errors are i.i.d.

normal random variables. However, skewed, heavy-tailed, heteroscedastic errors or outliers
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of the response are frequently encountered. In such situations, the efficiency of the least

square estimates is impaired. One extreme example is that when the response takes i.i.d.

Cauchy errors, neither Q-learning nor A-learning can consistently estimate the optimal ITR.

For example, in AIDS Clinical Trials Group Protocol 175 (ACTG175) data (Hammer et al.,

1996), HIV-infected subjects were randomized to four regimes with equal probabilities, and

our objective is to find the optimal ITR for each patient based on their age, weight, race,

gender and some other baseline measurements. The response CD4 count of the data follows a

skewed, heteroscedastic errors, which weakens the efficiency of classical Q- and A-learning. A

method to estimate optimal ITR which is robust against skewed, heavy-tailed, heteroscedastic

errors or outliers is highly valuable. One possible solution is to construct the optimal decision

rule based on the conditional median or quantiles of response given covariates than based on

average effects.

In the following, we present a simple example where a quantile-based decision rule is

more preferable than a mean-based decision rules. We use higher value of response Y to

indicate more favorable outcomes. Figure 1 plots the conditional density of Y under two

treatments, A and B, given a binary covariate X which takes the value of male and female.

Under the comparison based on conditional means, A and B are exactly equivalent. However,

conditional quantiles provide us more insight. For the male group, the conditional distribution

of response given treatment B is a log-normal and skewed to the right. Therefore, treatment

B is less favorable when either 50% or 25% conditional quantile are considered. For the female

group, the conditional distribution of response given treatment A is a standard normal while

a Cauchy distribution given treatment B. Therefore, if we make a comparison based on 25%

conditional quantile, treatment A is more favorable.

In this paper, we propose a general framework for optimal individualized treatment rule

estimation based on robust regression, including quantile regression and the regression based

on Huber’s loss and ǫ-insensitive loss. The proposed methodology has the following desired

features. First, the new decision rule obtained by maximizing the conditional quantile, which

is suitable for skewed, heavy-tailed errors or outliers. Second, the proposed estimator requires

only modeling the contrast function between two treatments, and is therefore robust against

misspecification of the baseline function. This property is shared by A-learning. Third,

empirical results from our comprehensive numerical study suggest favorable performance of
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Figure 1: The distribution functions of the response Y , in a randomized clinical trial with
two treatments, A and B, for male (two panels on the left) and female (two panels on the
right). The solid lines with triangle symbol, dashed line, and dotted lines are the conditional
mean, 50% quantile, and 25% quantile functions of Y given the gender and the treatment,
respectively.

the new robust regression estimator.

The rest of the paper is organized as follows. In Section 2, we first review the classical Q-

and A- learning methods. Then we propose the new procedure and method and discuss its

connection with existing methods. In Section 3, we study and prove the asymptotic properties

of the proposed method, including consistency and asymptotic normality. In Section 4, a

comprehensive numerical study is conducted to assess finite sample performance of the new

procedure. In Section 5, we apply the method to ACTG175 data. Concluding remarks

are given in Section 6. Throughout the paper, we use upper case letters to denote random

variables and lower case letters to denote their values.
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2 New Optimal Treatment Estimation Framework: Robust

Regression

2.1 Basic Notations and Assumptions

For simplicity, we consider a single stage randomized clinical trial with two treatments. For

each patient, the observed data is (X, A, Y ), where X ∈ X = IRp denotes the baseline

covariates, A ∈ A = {0, 1} denotes the treatment assigned to the patient, and Y is the

real-valued response, which is coded so that higher values indicate more favorable clinical

outcomes. An ITR g is a function mapping from X to A.

We first review the potential outcome framework (Neyman, 1923; Rubin, 1974, 1986).

The potential outcome Y ∗(a) is the outcome for an arbitrary individual has s/he received

treatment a. In actuality, at most one of the potential outcomes can be observed for any indi-

vidual. The optimal ITR under mean regression, which maximizes the expected outcome, is

goptµ = argmaxg∈GE[Y
∗{g(X)}]. Define the propensity score π(X) , P (A = 1|X). Following

Rubin (1974) and Rubin (1986), we can compute the expectation of the potential outcome

under the following two key assumptions.

(C1) Stable Unit Treatment Value Assumption (SUTVA): a patient’s observed out-

come is the same as the potential outcome for the treatment that s/he actually received.

Based on Rubin (1986), the SUTVA assumption implies that the value of the poten-

tial outcome for a subject does not depend on what treatments other subject receive.

Specifically, we can write the SUTVA assumption as

Yi = Y ∗
i (1)Ai + Y ∗

i (0)(1 −Ai), i = 1, . . . , n. (1)

This is also referred as consistency assumption.

(C2) Strong Ignorability Assumption: the treatment assignment A for an individ-

ual is independent of the potential outcomes conditional on the covariates X, i.e.,

A⊥{Y ∗(a)}a∈A|X. For a randomized clinical trial, this assumption is satisfied auto-

matically. For an observational study, as clinicians make decisions based only on all past

available information, this assumption essentially assumes no unmeasured confounders.

For consistent estimation of the optimal treatment rule, we also need to assume

(C3) Positivity Assumption: 0 < π(x) < 1, ∀x ∈ X .
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2.2 Existing Learning Methods: Q-learning and A-learning

Define the Q-function Q(x, a) , E(Y |x, a). Under assumptions (C1)-(C2), one can show that

goptµ (X) = argmaxa∈AQ(x, a) = argmaxa∈AE(Y |X, A = a). This suggests that, in order to

find goptµ , we only need to estimate the conditional expectation of Y given (X, A). This

result serves as the foundation of Q- and A-learning framework. We further define the value

function Vµ(g) = EX [Q{X, g(X)}] which is simply the marginal mean outcome under the

ITR g, and goptµ = argmaxgVµ(g).

Define the τ -th conditional quantile of Y given (X, A) as Qτ (X, A) , inf{y : FY |X,A(y) ≥
τ}. Then we define the value function based on the τ -th conditional quantile as Vτ−q(g) =

EX [Qτ{X, g(X)}], which is an analog to the definition of Vµ(g). The optimal ITR which

maximizes the τ -th conditional quantile is then defined as

goptτ (x) = argmax
a∈A

Qτ (x, a), τ ∈ [0, 1], (2)

and goptτ = argmaxgVτ−q(g).

Consider the general model E(Y |X, A) = h0(X) +AC0(X), where h0(X) represents the

baseline effect, and C0(X) denotes the contrast effect as

C0(X) = E(Y |X, A = 1)− E(Y |X, A = 0).

Therefore, goptµ (X) = 1{C0(X) > 0}. In Q-learning, a parametric model is often employed

as a working model,

E(Y |X, A) = h(X;γ) +AC(X;β), (3)

where h(X;γ) and C(X;β) are posited parametric models for h0(X) and C0(X) respectively.

Commonly a linear model is assumed for simplicity and interpretability, i.e., h(X;γ) = γTX̃

and C(X;β) = βTX̃, where X̃ = (1,XT)T. Given the observation {(Yi,Xi, Ai); i =

1, . . . , n}, the Q-learning procedure estimates the parameters (β,γ) by minimizing the squared

error loss

L1n(β,γ) =
1

n

n
∑

i=1

{Yi − h(Xi;γ)−AiC(Xi;β)}2 . (4)

Denote the optimized point as (β̂
Q
, γ̂Q). The estimated optimal ITR based on Q-learning is

then ĝQ(x) , 1{C(x; β̂
Q
) > 0}, which is a consistent estimator of goptµ (x) if both h(X;γ)

and C(X;β) are correctly specified.
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A-learning is a semiparametric improvement of Q-learning by modeling only the contrast

function C0(X) rather than the full Q-function. This is reasonable based on the observation

that the optimal ITR goptµ only depends on C0(X). By positing C(X;β) for the contrast

function, in A-learning, one can estimate coefficients β by solving the following estimating

equation
n
∑

i=1

λ(Xi) {Ai − π(Xi)} {Yi −AiC(Xi;β)− h(Xi)} = 0, (5)

where λ(Xi) and h(Xi) are arbitrary functions, and λ(Xi) has the same dimension as β.

Denote the solution to (5) by β̂
A
. If var(Y |X) is constant and C(Xi;β) is correctly specified,

the optimal choices of λ(·) and h(·) are λ(Xi;β) = ∂/∂βC(Xi;β) and h(Xi) = h0(Xi)

(Robins, 2004). In practice, one may pose models, say π(Xi;φ) and h(Xi;γ) for π(Xi)

and h(Xi) respectively, and take λ(Xi;β) = ∂/∂βC(Xi;β). Under randomized designs,

the propensity score π(Xi) is known. Otherwise, a logistic model can be proposed. Under

the assumption that C(X;β) is correctly specified, the double robustness property of A-

learning states that as long as one of π(X;φ) and h(X;γ) is correctly specified, ĝA(x) ,

1{C(x; β̂
A
) > 0} is consistent estimator of goptµ (x).

Recently, Lu et al. (2011) propose a variant of A-learning by a loss-based learning frame-

work. Rewrite

E(Y |X, A) =h0(X) +AC0(X)

=ϕ0(X) + {A− π(X)}C0(X),

where ϕ0(X) = h0(X) + π(X)C0(X). Based on the expression above, Lu et al. (2011)

propose to estimate (β,γ) by minimizing the following loss function

L2n(β,γ) =
1

n

n
∑

i=1

[Yi − ϕ(Xi;γ)− {Ai − π(Xi)}C(Xi;β)]
2 , (6)

where ϕ(X;γ), C(X;β) are proposed models for ϕ0(X) and C0(X) respectively. Denote

the minimizer of (6) as (β̂
A

LS , γ̂
A
LS). Lu et al. (2011) show that ĝALS(x) , 1{C(x; β̂

A

LS) > 0}
is a consistent estimator of goptµ (x) when the propensity score π(X) is known or can be

consistently estimated from the data, and C(X;β) is correctly specified. We refer to this

method as least square A-learning (lsA-learning).

One main advantage of the lsA-learning, compared to the classical A-learning, is its square

loss, making the procedure easy to be coupled with penalized regression to achieve variable
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selection in high dimensional data. Specifically, Lu et al. (2011) propose to identify impor-

tant nonzero coefficients in β by applying an adaptive LASSO penalty to (6). Under some

regularity conditions, both the selection consistency and asymptotic normality of the esti-

mator are established in Lu et al. (2011). The downside of lsA-learning is that one direction

of the double robustness property of the classical A-learning is lost, i.e., when ϕ(X;γ) is

correctly specified, β may still not be consistent if the propensity score π(X) is not consis-

tently estimated. Finally, it can be shown that lsA-learning and Q-learning are equivalent

when π(X) is constant and both ϕ(X;γ) and C(X;β) take the linear form (with the space

of C(X;β) included in the space of ϕ(X;γ)). Similar properties hold for A-learning and

Q-learning (Schulte et al., 2014).

2.3 New Proposal: Robust Regression

Skewed, heavy-tailed, heteroscedastic errors or outliers of the response Y are frequently

encountered in clinical trials. It is well known that ordinary least square estimation fails to

produce a reliable estimator in such situations. The immediate consequence is the efficiency

loss in the estimators produced by Q-, A-, and lsA-learning. This motivates us to adopt

robust regression techniques in optimal treatment regime estimation.

We consider the following additive model,

Yi = ϕ0(Xi) + {Ai − π(Xi)}C(Xi;β0) + ǫi, i = 1, . . . , n, (7)

where ϕ0(X) is the baseline function, C(X;β0) is the contrast function, π(X) is the propen-

sity score, and ǫ is the error term which satisfies the conditional independence assumption

ǫ ⊥ A|X. We point out that the error term defined in (7) can be very general. For ex-

ample, we could take ǫ =
∑K

j=1 σj(X)ej for any K ≥ 1 that allows the error distribution

to change with X, used to model heterogeneous errors, where σj(X) are arbitrary posi-

tive functions and ej ⊥ (A,X) for all j = 1, . . . ,K. Throughout the paper, we assume

{(Yi,Xi, Ai, ǫi), i = 1, . . . , n} are i.i.d random samples of the population.

We propose to estimate (β,γ) by minimizing

L3n(β,γ) =
1

n

n
∑

i=1

M [Yi − ϕ(Xi;γ)− {Ai − π(Xi)}C(Xi;β)] , (8)

where γ ∈ Γ, β ∈ B and M : IR→[0,∞) is a convex function with minimum achieved at

0. Denote the minimizer of (17) as (β̂
R

M , γ̂R
M ), and the estimated ITR is then ĝRM (x) ,
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1{C(x; β̂
R

M ) > 0}. In the following, we refer the robust regression with loss function M(x) as

RR(M)-learning. In this article, we consider the following three types of loss functions, i.e.,

the pinball loss

M(x) = ρτ (x) ,

{

(τ − 1)x, if x < 0

τx, if x ≥ 0
(9)

where 0 < τ < 1, the Huber loss

M(x) = Hα(x) ,

{

0.5x2, if |x| < α

α|x| − 0.5α2, if |x| ≥ α
(10)

for some α > 0, and the ǫ-insensitive loss

M(x) = Jǫ(x) , max(0, |x| − ǫ) (11)

for some ǫ > 0. The pinball loss are frequently applied for quantile regression (Koenker,

2005), and the Huber losses and the ǫ-insensitive are robust against heavy tailed errors or

outliers. A dramatic difference of pinball loss, Huber loss and ǫ-insensitive loss, compared

with the square loss, is that they penalize large deviances linearly instead of quadratically.

This property makes them more robust when dealing with responses with non-normal type

of errors.

3 Asymptotic Properties

3.1 Consistency of Robust Regression: Pinball Loss

Under the conditional independence assumption ǫ ⊥ A|X, we have

Q(X, A) =ϕ0(X) + {A− π(X)}C(X;β0) + µǫ(X);

Qτ (X, A) =ϕ0(X) + {A− π(X)}C(X;β0) + F−1
ǫ (X; τ).

where µǫ(X) and F−1
ǫ (X; τ) denote the mean and the τ -th quantile of ǫ conditional on X

respectively. Therefore, in this situation, we have goptµ = goptτ = 1{C(X;β0) > 0}. In

other words, the underlying ITR which maximize the population mean and τ -th quantile

are equivalent. For a good ITR ĝ = 1{C(X; β̂) > 0}, it is reasonable to require β̂ to be a

consistent estimator of β0. This consistency result is first shown for the robust regression

with pinball loss, which is given in Theorem 1. We allocate all the proofs into the Appendix

A.
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Theorem 1. Under regularity conditions (A1)-(A8) in the Appendix A, if the contrast func-

tion in (7) is correctly specified and π(x) is known, then β̂
R

ρ(τ)
p→β0 for all τ ∈ (0, 1), where

β̂
R

ρ(τ) is the solution of (17) when M(x) = ρτ (x).

Remarks:

1. Theorem 1 doesn’t assume the finiteness of E(Y ). Therefore it can be applied to the

cases when ǫi follows a Cauchy distribution.

2. After fitting the model, the Assumption (A2), ǫ ⊥ A|X, can be verified by applying

conditional independence test with r̂(β̂, γ̂) and A given X, where r̂(β̂, γ̂) is the esti-

mated residual and r̂(β̂, γ̂) = Y −ϕ(X; γ̂)−{A−π(X)}C(X; β̂). See Lawrance (1976);

Su and White (2007); Song (2009); Huang (2010); Zhang et al. (2012b) for more dis-

cussion of conditional independence hypothesis tests. In particular, we demonstrate

the usefulness of the test by applying the Kernel-based conditional independence test

(KCI-test, Zhang et al. (2012b)) in Section 5. KCI-test doesn’t assume functional forms

among variables and thus suits our need.

When the conditional independence assumption (ǫ ⊥ A|X) does not hold, β̂
R

ρ(τ) may no

longer be a consistent estimator of β0. This is intuitively reasonable as ǫ contains extra

information with respect to A. In fact, a general result which can be derived in this case

is that, (β̂
R

ρ(τ), γ̂
R
ρ(τ)) minimizes a weighed mean-square error loss function with specification

error (Angrist et al., 2006; Lee, 2013).

Instead of assuming response Y takes an additive error term ǫ as in (7), we assume the

conditional quantile function Qτ (X, A) = ϕ0(X)+{A−π(X)}C(X;β0(τ)), where we redun-

dantly represent the baseline function and contrast function as ϕ0(·) and C(·) respectively.

Notice that we use β0(τ) instead of β0 to emphasize that the true β may vary with respect to

τ . The proposed model is Q̂(β,γ) = ϕ(X;γ) + {A−π(X)}C(X;β) with C(X;β) correctly

specified. Define

(β(τ),γ(τ)) = argmin
β∈B,γ∈Γ

E
[

ρτ{Y − Q̂(β,γ)} − ρτ{Y − Q̂(β′,γ ′)}
]

(12)

where (β′,γ ′) is any fixed point in B×Γ. Define the QR specification error as ∆τ (X, A;β,γ) ,

Q̂(β,γ)−Qτ (X, A). Define the quantile-specific residual as ǫτ , Y −Qτ (X, A) with condi-
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tional density function fǫτ (·|X, A). Then we have the following approximation theorem. The

proof of the theorem follows Theorem 1 of Angrist et al. (2006), and is omitted for brevity.

Theorem 2. Suppose that (i) the conditional density fY (y|X, A) exists a.s.; (ii)E[Qτ (X, A)]

and E[∆2
τ (X, A;β,γ)] are finite; (iii) (β(τ),γ(τ)) uniquely solves (12). Then

(β(τ),γ(τ)) = argmin
β,γ

E[wτ (X, A;β,γ)∆2
τ (X, A;β,γ)] (13)

where

wτ (X, A;β,γ) =

∫ 1

0
(1− u)fǫτ (u∆τ (X, A;β,γ)|X, A)du. (14)

Remarks:

1. Theorem 2 shows that Q̂ (β(τ),γ(τ)) is a weighted least square approximation to

Qτ (X, A). In other word, ϕ(X;γ(τ)) + {A − π(X)}C(X;β(τ)) is close to ϕ0(X) +

{A − π(X)}C(X;β0(τ)). So even though it is not true that β(τ) = β0(τ) holds ex-

actly, the difference between them is small in general . This coupled with the fact

that β̂
R

ρ(τ)
p→β(τ) (proved in Theorem 4), leads to the conclusion that approximately

ITR ĝR
ρ(τ)(x) (, 1{C(x; β̂

R

ρ(τ)) > 0}) maximizes the τ -th conditional quantile. This

observation is justified numerically in Section 4.2.

2. When there exists γ0 ∈ Γ such that ϕ0(X) ≡ ϕ(X;γ0), then we have β(τ) = β0(τ).

3.2 Consistency of Robust Regression: Other Losses

Under model (7) and the assumption ǫ ⊥ A|X, similar consistency results can be established

for Huber loss and the ǫ-insensitive loss, as stated in Theorem 3.

Theorem 3. Under regularity conditions (A1)-(A8), if the contrast function in (7) is cor-

rectly specified and π(x) is known, then we have

(a) β̂
R

H(α)
p→β0 for all α > 0, where β̂

R

H(α) is the solution of (17) when M(x) = Hα(x);

(b) β̂
R

J(ǫ)
p→β0 for all ǫ > 0, where β̂

R

J(ǫ) is the solution of (17) when M(x) = Jǫ(x).

11



3.3 Asymptotic Normality: Pinball Loss

Without loss of generality, in this section we assume both the ϕ(X;γ) and C(X;β) take the

linear form: ϕ(X;γ) = X̃Tγ and C(X;β) = X̃Tβ, where X̃ = (1,XT)T. Denote β̂(τ) =

β̂
R

ρ(τ) and γ̂(τ) = γ̂R
ρ(τ). Denote W = ({A−π(X)}X̃T, X̃T)T, θ(τ) = (β(τ)T,γ(τ)T)T, θ̂(τ) =

(β̂(τ)T, γ̂(τ)T)T and J(τ) , E [fY (W
Tθ(τ)|X, A)WW T]. Under the following regularity

conditions, which is the same as the assumptions assumed in Angrist et al. (2006) and Lee

(2013), we have the asymptotic normality of θ̂(τ), which is given in Theorem 4.

(B1) {(Yi,Xi, Ai, ǫi), i = 1, . . . , n} are i.i.d random variables;

(B2) the conditional density fY (y|X = x, A = a)) exists, and is bounded and uniformly

continuous in y, uniformly in x over the support of X;

(B3) J(τ) is positive definite for all τ ∈ (0, 1), where θ(τ) is uniquely defined in (12);

(B4) E‖X‖2+ǫ for some ǫ > 0.

Theorem 4. If regularity conditions (B1)-(B4) are hold, we have

1. (Uniform Consistency) supτ ‖θ̂(τ)− θ(τ)‖ = op(1);

2. (Asymptotic Normality) J(·)√n(θ̂(·)−θ(·)) converge in distribution to a zero mean

Gaussian process with covariance function Σ(τ, τ ′) defined as

Σ(τ, τ ′) = E
[

(τ − 1{Y < W Tθ(τ)})
(

τ ′ − 1{Y < W Tθ(τ)}
)

WW T
]

. (15)

The proof is given in Angrist et al. (2006), and the asymptotic covariance matrix of θ̂(τ)

can be estimated by either a bootstrap procedure (Hahn, 1997) or a nonparametric kernel

method (Angrist et al., 2006). We adopt the parametric bootstrap approach to estimate the

asymptotic covariance matrix in Section 5. Under model (7) the result of Theorem 4 can be

further simplified, which is given in Theorem 5.

Theorem 5. Under the condition of Theorem 4, if further we assume Y = ϕ0(X) + {A −
π(X)}X̃Tβ0 + ǫ, and ǫ ⊥ A|X, then

1. supτ ‖β̂(τ)− β0‖ = op(1);

12



2.
√
n(β̂(τ)− β0)

d→N(0, J−1
11 (τ)Σ11(τ, τ)J

−1
11 (τ)), where

J11(τ) =E
[

fǫ

(

X̃Tγ(τ)− ϕ0(X)|X
)

π(X){1 − π(X)}X̃X̃T

]

,

Σ11(τ, τ) =E

{

[

τ − 1{ǫ < X̃Tγ(τ)− ϕ0(X)}
]2

π(X){1 − π(X)}X̃X̃T

}

.

Furthermore, we have Σ11(τ, τ) ≤
(

τ2 + |1− 2τ |
)

E
[

π(X){1 − π(X)}X̃X̃T

]

.

Comparing the asymptotic normality of β̂(τ) with β̂
A

LS yields interesting insights. As-

suming that E(Y |X, A) = ϕ0(X) + {A − π(X)}X̃Tβ0 and (β0,γ
∗) = argmin(β,γ)E[Y −

ϕ(X;γ) − {A − π(X)}X̃Tβ]2, the asymptotic normality property of β̂
A

LS can then be es-

tablished, which is summarized in Theorem 6. Its proof has been omitted, and readers are

referred to Lu et al. (2011).

Theorem 6. Under the regularity condition of A1-A4 of Lu et al. (2011),

√
n(β̂

A

LS − β0)
d→N(0, U−1

11 Ω11U
−1
11 ), (16)

where U11 = E
[

π(X){1 − π(X)}X̃X̃T

]

and

Ω11 = E
[

{ϕ0(X) − ϕ(X;γ∗) + ǫ}2 π(X){1 − π(X)}X̃X̃T

]

Remarks:

1. When the family of functions {ϕ(X;γ),γ ∈ Γ} cannot well approximate the unknown

baseline function ϕ0(X), the Ω11 term in the asymptotic variance of β̂
A

LS may explode,

which makes β̂
A

LS less efficient than β̂(τ).

2. When Y = X̃Tγ0 + {A − π(X)}X̃Tβ0 + ǫ, ǫ ⊥ (A,X), π(X) ≡ 0.5 and ǫ ∼ N(0, σ2),

the asymptotic variance of β̂(τ = 0.5) is 2πσ2E(X̃X̃T)−1, which is strictly larger than

4σ2E(X̃X̃T)−1 (the asymptotic variance of β̂
A

LS).

4 Numerical Results: Simulation Studies

To demonstrate finite sample performance of the proposed robust regression methods for

optimal treatment rule estimation, we conduct two simulation studies: the errors independent

with treatments, and the errors interactive with treatments, respectively.
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4.1 Simulation Study I: error terms independent with treatment

We consider the following two models with p=3,

• Model I:

Yi = 1 + (Xi1 −Xi2)(Xi1 +Xi3) + {Ai − π(Xi)}βT

0X̃i + σ(Xi)ǫi,

where Xi = (Xi1,Xi2,Xi3)
T are multivariate normal with mean 0, variance 1, and

Corr(Xij ,Xik) = 0.5|j−k|, X̃i = (1,XT

i )
T and β0 = (0, 1,−1, 1)T .

• Model II:

Yi = γT

0X̃i + {Ai − π(Xi)}βT

0X̃i + σ(Xi)ǫi,

where γT

0 = (0.5, 4, 1,−3), and Xi, X̃i and β0 are the same as Model I.

We take linear forms for both the baseline and the contrast functions, where ϕ(X;γ) =

γTX̃ and C(X;β) = βTX̃. We assume the propensity scores π(·) are known, and we study

both the constant case (π(Xi) = 0.5) and the non-constant case (π(Xi) = logit(Xi1 −Xi2)).

In addition, We consider two different σ(Xi) functions, i.e., the homogeneous case with

σ(Xi) = 1, and the heterogenous case with σ(Xi) = 0.5 + (Xi1 − Xi2)
2. The simulation

results under constant and non-constant propensity scores are similar. Thus, for brevity, we

only report the constant case and allocate the result of non-constant case to the Appendix

B. The results of Model I and II with constant propensity score are given in Table 1 and 2

respectively.

Comparison is made among four methods. They are: lsA-learning, robust regression

with ρ0.5 (RR(ρ0.5)), robust regression with ρ0.25 (RR(ρ0.25)), and robust regression with

Huber loss (RR(H)). The error terms ǫi are taken as standard i.i.d. normal, log-normal or

Cauchy distribution, and independent with both A and X. It is easy to check that the

conditional independence assumption ǫ ⊥ A|X is satisfied, and goptµ = goptτ = 1{βT

0X̃i > 0}.
We consider four different sample sizes 100, 200, 400 and 800. To evaluate the perfor-

mance of each method, we compare three groups of criteria: (1) the mean squared er-

ror ‖β̂ − β0‖22 (mse), which measures the distance between estimated parameters and the

true parameter β0; (2) the percentage of making correct decisions (PCD), which are cal-

culated based on a validation set with 10000 observations. Specifically, we take the for-
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mula 100 ∗
(

1−
∑NT

i=1 |1{β̂
T

X̃i > 0} − 1{βT

0X̃i > 0}|/NT

)

with NT = 10000; (3) the dif-

ferences of Vµ(g) and V0.5−q(g) between the optimal ITR and the estimated ITR, where

δµ = Vµ(g
opt
µ )−Vµ(ĝ) and δτ = Vτ−q(g

opt
µ )−Vτ−q(ĝ), ∀τ ∈ (0, 1). Vµ(g) and Vτ−q(g) (defined

in Section 2.1) are estimated from the validation set as well, and they evaluate the overall

performance of an ITR g, where the former one focuses on the response’s mean and the latter

one focuses on the response’s conditional τ -th quantile. Under our setting, δµ = δ0.5 when

they both exists. Thus, only δ0.5 is reported. For each scenario, we take 1000 replications.

All numbers in the tables are based on the sample average of all replications. We further

report the standard errors of mse to evaluate the variability of the corresponding statistics.

When the propensity score is constant, lsA-learning is equivalent to both Q- and A-

learning under our setting. If we compare the performance of the methods under homogeneous

and heterogeneous errors, the first thing we find is that lsA-learning works much worse

under the heterogeneous errors, while all other methods are generally less affected by the

heterogeneity of the errors. When the baseline function is misspecified as in Model I, under the

homogeneous normal errors, RR(H) works slightly better than lsA-learning, while RR(ρ0.25)

works the worst. However, the difference in general is small. For the homogeneous log-normal

errors, again RR(H) works the best, while RR(ρ0.5) and RR(ρ0.25) have similar performance,

and lsA-learning works the worst. Under the homogeneous Cauchy errors, RR(ρ0.5) works

the best and RR(H) has a close performance. The lsA-learning is no longer consistent, and

its mse explodes. The actual numbers are too large and thus leave as blank in Table 1 and

2. Furthermore, with the Cauchy errors, the PCD of lsA-learning are less than 60% under

all scenarios, while other methods’ PCD can be as high as 90%. When baseline function is

correctly specified as in Model II, under homogeneous normal errors, lsA-learning performs

the best. However, in this case RR(H) also has a very close performance, and thus makes no

difference from a practical point of view to choose between these two methods. The results

of Model II under other cases draw similar conclusion as Model I. To sum up, the overall

conclusion is that, under the conditional independence assumption, the proposed robust

regression method RR(M) is more efficient than Q-, A- and lsA-learning in the circumstances

when observations have skewed, heterogeneous or heavy-tailed errors. On the other hand,

when the error terms indeed follows i.i.d. normal distribution, the loss of efficiency of RR(M)

is not significant. This is especially true when Huber loss is applied.
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4.2 Simulation Study II: error terms interactive with treatment

We consider the following model with p=2,

Yi = 1 + 0.5 sin[π(Xi1 −Xi2)] + 0.25(1 +Xi1 + 2Xi2)
2 + (Ai − π(Xi))θ

T

0X̃i + σ(Xi, Ai)ǫi,

where Xi = (Xi1,Xi2)
T, X̃i = (1,XT

i )
T, σ(Xi, Ai) = 1 + Aid0X

2
i1, θ

T

0 = (0.5, 2,−1) and Xik

are i.i.d. Uniform[-1,1].

Similar as Section 4.1, we take linear forms for both the baseline and the contrast func-

tions, where ϕ(X;γ) = γTX̃ , C(X;β) = βTW and W = (X̃ ,X2
1 ,X

2
2 ,X1X2). d0 = 5, 10

or 15. The error terms ǫi follows i.i.d. N(0,1) or Gamma(1,1)-1 distribution. The propen-

sity scores π(·) are known, and we consider both the constant case π(Xi) = 0.5 and the

non-constant case π(Xi) = logit(Xi1 −Xi2). We report only the result of the constant case

(Table 3), and allocate the non-constant case to Appendix B.

We compare the performance of four methods: lsA-learning, robust regression with ρ0.5

(RR(ρ0.5)), robust regression with ρ0.25 (RR(ρ0.25)) and robust regression with Huber loss

(RR(H)). We consider four different sample sizes 100, 200, 400 and 800. For each scenario, we

again simulate 1000 replications. When error terms are interactive with treatment, the true

β0 associated with goptµ and goptτ are different. Specifically, under our model, β0 = (θT

0, 0, 0, 0)
T

for goptµ , β0 = (θT

0, d0F
−1
ǫ (0.5), 0, 0)T for gopt0.5 and β0 = (θT

0, d0F
−1
ǫ (0.25), 0, 0)T for gopt0.25. Thus,

the two criteria, mse and PCD used in simulation study I, are no longer meaningful. So we

evaluate the performance of methods in this simulation study based on value differences δµ,

δ0.5 and δ0.25.

Based on Theorem 6, we can prove that ĝALS(x) is consistent which converges to goptµ

as sample size goes to infinity. This is shown in Table 3 such that the δµ column for the

lsA-learning method converges to 0 as sample size increases. We also know under Normal

error terms, δ0.5 = δµ. Thus, the δ0.5 column for the lsA-learning method also converges to 0.

However, all other columns in Table 3 converge to a positive constant instead of 0 as sample

size goes to infinity.

Another observation we discover from Table 3 is RR(H) and RR(ρ0.5) perform similarly.

One additional observation we have is even though lsA-learning outperform all other methods

in δµ when sample size is large. It may be worse than RR(ρ0.5) and RR(H) when sample size

is small. This is due to the fact that lsA-learning is inefficient under the heteroscedastic or

16



skewed errors. The last observation we have is overall lsA-learning, RR(ρ0.5) and RR(ρ0.25)

perform best at the columns δµ, δ0.5 and δ0.25 accordingly. The reason is given in the Remark

under Theorem 2, which shows that ĝR
ρ(τ) (, 1{C(x; β̂

R

ρ(τ)) > 0}) in general approximates

the unknown optimal ITR goptτ even when the conditional independence assumption ǫ ⊥ A|X
does not hold.

5 Application to AIDS study

We illustrate the proposed robust regression method to data from AIDS Clinical Trials Group

Protocol 175 (ACTG175), which has been previously studied by various authors (Leon et al.,

2003; Tsiatis et al., 2008; Zhang et al., 2008; Lu et al., 2011). In the study, 2139 HIV-infected

subjects were randomized to four different treatment groups in equal proportions, and the

treatment groups are zidovudine (ZDV) monotherapy, ZDV + didanosine (ddI), ZDV + zal-

citabine, and ddI monotherapy. Following Lu et al. (2011), we choose CD4 count (cells/mm3)

at 20± 5 weeks post-baseline as the primary continuous outcome Y , and include five contin-

uous covariates and seven binary covariates as our covariates. They are: 1. age (years), 2.

weight (kg), 3. karnof=Karnofsky score (scale of 0-100), 4. cd40=CD4 count (cells/mm3) at

baseline, 5. cd80=CD8 count (cells/mm3) at baseline, 6. hemophilia=hemophilia (0=no,

1=yes), 7. homosexuality=homosexual activity (0=no, 1=yes), 8. drugs=history of in-

travenous drug use (0=no, 1=yes), 9. race (0=white, 1=non-white), 10. gender (0=fe-

male, 1=male), 11. str2= antiretroviral history (0=naive, 1=experienced), and 12. symp-

ton=symptomatic status (0=asymptomatic, 1=symptomatic). For brevity, we only compare

the treatment ZDV + didanosine (ddI) (A = 1) and ZDV + zalcitabine (A = 0), and re-

strict our samples to subjects receiving these two treatments. Thus, the propensity scores

π(Xi) ≡ 0.5 in our restricted samples as the patients are assigned into one of two treatments

with equal probability.

In our analysis, we assume linear models for both the baseline and the contrast functions.

For interpretability, we keep the response Y (the CD4 count) at its original scale, which is

also consistent with the way clinicians think about the outcome in practice (Tsiatis et al.,

2008). We plot the scatter plot of response Y against age. It shows some skewness and

heterogeneity. With some preliminary analysis (fitting full model with lsA-learning and

RR(M)), we find that only covariates age, homosexuality and race may possibly interact
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with the treatment. So in our final model, only these three covariates are included in the

contrast function, while at the same time we still keep all twelve covariates in the baseline

function. The estimated coefficients associated with their corresponding standard errors

and p-values are given in Table 4, where standard errors are estimated with 1000 bootstrap

samples (parametric bootstrap) and p-values are calculated with normal approximation. Only

coefficients included in the contrast function are shown.

From Tables 4, we make the following observations. First, lsA-learning (equivalent to Q-

and A-learning with this model setting) and robust regression with pinball loss and Huber

loss all have estimates with the exact same signs. Second, the estimated coefficients are

distinguishable across different methods. Third, the covairiate homosexuality is significant

under lsA-learning, but it is not significant under robust regression with either pinball losses

or Huber loss, when the significant level α is set to 0.05.

We could further estimate the values (Vµ(ĝ)) associated with each method by either the

inverse probability weighted estimator (IPWE) (Robins, 2000) or the augmented inverse

probability weighted estimator (AIPWE) (Robins et al., 1994), where

V̂ IPWE
µ (ĝ) =

∑n
i=1 1{Ai = ĝ(Xi)}Yi/p(Ai|Xi)

∑n
i=1 1{Ai = ĝ(Xi)}/p(Ai|Xi)

,

V̂ AIPWE
µ (ĝ) =

1

n

n
∑

i=1

Ê(Yi|Xi, ĝ(Xi)) +
1

n

n
∑

i=1

1{Ai = ĝ(Xi)}
p(Ai|Xi)

[

Yi − Ê(Yi|Xi, Ai)
]

,

Ê(Yi|Xi, Ai)) = ϕ(Xi; γ̂) + {Ai − p(Ai|Xi)}C(Xi; β̂), and p(Ai|Xi) ≡ 0.5. Both V̂ IPWE
µ (ĝ)

and V̂ AIPWE
µ (ĝ) are consistent estimator of value Vµ(ĝ), and their asymptotic covariance ma-

trix can also be consistently estimated from the data (Zhang et al., 2012a; McKeague and Qian,

2014). The estimates of (Vµ(ĝ)) and their corresponding 95% confidence interval of four meth-

ods based on both IPWE and AIPWE are given in Table 5.

From Table 5, robust regression with ρ0.5 and Huber loss perform slightly better than

lsA-learning, while robust regression with ρ0.25 performs worse than lsA-learning when the

values (Vµ(ĝ)) is estimated based on AIPWE. We conduct KCI-test to check the conditional

independence assumption ǫ ⊥ A|X. For RR(ρ(0.5)), RR(ρ(0.25)) and RR(H), their p-values

associated with KCI-test are 0.060, 0.002 and 0.083 respectively. The conditional indepen-

dence assumption holds at the significance level of 0.05 for RR(ρ(0.5)) and RR(H), so the

estimated ITR can be thought to maximize Vµ(g). On the other hand, this assumption
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doesn’t hold for RR(ρ(0.25)), and its estimated ITR doesn’t maximize Vµ(g), instead it ap-

proximately maximizes V0.25−q(g). This partly explains the relatively bad performance of

RR(ρ0.25) in Table 5. Again, as RR(ρ(0.5)) and RR(H) are more robust against heteroge-

neous, right skewed errors comparing with the least square method, they slightly outperform

lsA-learning in term of Vµ(g).

6 Discussion

In this article, we propose a new general loss based robust regression framework for estimat-

ing the optimal individualized treatment rules. This new method has the desired property

to be robust against skewed, heterogeneous, heavy-tailed errors and outliers. And similar

as A-learning, it produces consistent estimates of the optimal ITR even when the baseline

function is misspecified. However, the consistency of the proposed method does require the

key conditional independence assumption ǫ ⊥ A|X, which is somewhat stronger than the

condition needed for the consistency of Q- and A-learning (E(ǫ|X, A) = 0). So there are situ-

ations when the classical Q- and A-learning are more appropriate to apply. Furthermore, we

also point out in the article that when pinball loss ρτ is chosen and the assumption ǫ ⊥ A|X
doesn’t hold, the estimated ITR approximately maximize the conditional τ -th quantile and

thus maximize Vτ−q(g). From a practice point of view, there are situations when maximizing

Vτ−q(g) is a much more reasonable approach comparing with maximizing Vµ(g), especially

when the conditional distribution of response Y is highly skewed to one side.

In practice, there are cases when multiple treatment groups need to be compared simul-

taneously. For brevity, we have limited our discussion to two treatment groups. However,

the proposed method can be readily extended to multiple cases by just replacing equation

(17) with the following more complex form,

L3n(β,γ) =
1

n

n
∑

i=1

M

[

Yi − ϕ(Xi;γ)−
K−1
∑

k=1

(I(Ai = k)− πk(Xi))Ck(Xi;βk)

]

,

where A = {1, . . . ,K}, K-th treatment is the baseline treatment, πk(Xi) = Pr(Ai = k|Xi)

and Ck(Xi;βk) denotes the contrast function comparing k-th treatment and the baseline

treatment. All Theorems can be easily extended to this multiple treatments setting as well.

When the dimension of prognostic variables is high, regularized regression is needed in

order to produce parsimonious yet interpretable individualized treatment rules. Essentially
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this is a variable selection problem in the context of M-estimator, which has been previously

studied in Wu and Liu (2009); Li et al. (2011), etc. This is an interesting topic that needs

further investigation. Another interesting direction is to extend the current method to the

multi-stage setting, where sequential decisions are made along the time line.

Appendix A: Proof of Asymptotic Properties

We consider the following additive model,

Yi = ϕ0(Xi) + {Ai − π(Xi)}C(Xi;β0) + ǫi, i = 1, . . . , n,

where ϕ0(X) is the baseline function, C(X;β0) is the contrast function, π(X) is the propen-

sity score, and ǫ is the error term. We estimate (β,γ) by minimizing

L3n(β,γ) =
1

n

n
∑

i=1

M [Yi − ϕ(Xi;γ)− {Ai − π(Xi)}C(Xi;β)] , (17)

where γ ∈ Γ, β ∈ B and M : IR→[0,∞) is a convex function with minimum achieved at 0.

We consider the following three types of loss functions, i.e., the pinball loss

M(x) = ρτ (x) ,

{

(τ − 1)x, if x < 0

τx, if x ≥ 0

where 0 < τ < 1, the Huber loss

M(x) = Hα(x) ,

{

0.5x2, if |x| < α

α|x| − 0.5α2, if |x| ≥ α

for some α > 0, and the ǫ-insensitive loss

M(x) = Jǫ(x) , max(0, |x| − ǫ)

for some ǫ > 0. Define ∆C(x;β) = C(x;β)− C(x;β0). Assume γ ∈ Γ, β ∈ B and γ′ is any

arbitrary fix point in Γ.

Regularity conditions A:

(A1) {(Yi,Xi, Ai, ǫi), i = 1, . . . , n} are i.i.d random variables.

(A2) ǫi ⊥ Ai|Xi ∀i = 1, . . . , n.

(A3) E|∆C(Xi;β)| < ∞ ∀β ∈ B.
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(A4) Pr{x ∈ X : ∆C(x;β) 6= 0} > 0 for all β 6= β0.

(A5) E|ϕ(Xi;γ)| < ∞ ∀γ ∈ Γ.

(A6) G2(γ) has unique minimizer γ∗, where G2(γ) is the pointwise limit of L3n(β0,γ) −
L3n(β0,γ

′) in probability.

(A7) L3n(β,γ) is strictly convex with respect to (β,γ).

(A8) ǫ|X = x has nonzero density on R for almost all x ∈ X .

Lemma 1. |ρτ (x− y)− ρτ (x)| ≤ |y|, for all τ ∈ (0, 1).

Proof.

|ρτ (x− y)− ρτ (x)| = |τ {(x− y)+ − x+}+ (1− τ) {(x− y)− − x−}|

≤ |(x− y)+ − x+|+ |(x− y)− − x−| = |y|

Lemma 2.

ρτ (x− y)− ρτ (x) =− τy1{x ≥ 0}+ (1− τ)y1{x < 0}+ (y − x)1{x ≥ 0}1{y > x}

+ (x− y)1{x < 0}1{y < x},

for all τ ∈ (0, 1).

Proof. Denote D = ρτ (x− y)− ρτ (x).

1. If x ≥ 0, y ≤ 0 ⇒ D = −τy;

2. If x ≥ 0, y > 0, |x| ≥ |y| ⇒ D = −τy;

3. If x ≥ 0, y > 0, |x| < |y| ⇒ D = −τy + (y − x);

4. If x < 0, y ≥ 0 ⇒ D = (1− τ)y;

5. If x < 0, y < 0, |x| ≥ |y| ⇒ D = (1− τ)y;

6. If x < 0, y < 0, |x| < |y| ⇒ D = (1− τ)y + (x− y);

Combining the above 6 cases, Lemma 2 is proved.
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Proof of Theorem 1.

Proof. Recall that the loss function defined in (17) takes the form

L3n(β,γ) =
1

n

n
∑

i=1

ρτ [ϕ0(Xi)− ϕ(Xi;γ) + ǫi − (Ai − π(Xi))∆C(Xi;β)] .

By definition,

(β̂
R

ρ(τ), γ̂
R
ρ(τ)) =argmin(β,γ)L3n(β,γ)− L3n(β0,γ

′)

=argmin(β,γ) [L3n(β,γ)− L3n(β0,γ)] +
[

L3n(β0,γ)− L3n(β0,γ
′)
]

,

Define

S1n(β,γ) =L3n(β,γ)− L3n(β0,γ) = 1/n

n
∑

i=1

d1i;

S2n(β,γ) =L3n(β0,γ)− L3n(β0,γ
′) = 1/n

n
∑

i=1

d2i

where

d1i =ρτ [ϕ0(Xi)− ϕ(Xi;γ) + ǫi − (Ai − π(Xi))∆C(Xi;β)]− ρτ [ϕ0(Xi)− ϕ(Xi;γ) + ǫi] ,

d2i =ρτ [ϕ0(Xi)− ϕ(Xi;γ) + ǫi]− ρτ
[

ϕ0(Xi)− ϕ(Xi;γ
′) + ǫi

]

.

By Lemma 1, A3 and A5, E|d1i| ≤ E|(Ai − π(Xi))∆C(Xi;β)| ≤ E|∆C(Xi;β)| < ∞ and

E|d2i| ≤ E|ϕ(Xi;γ)− ϕ(Xi;γ
′)| ≤ E|ϕ(Xi;γ)|+ E|ϕ(Xi;γ

′)| < ∞. Then, by Law of Large

Number, ∀ β ∈ B, γ ∈ Γ, we have S1n(β,γ)
p→G1(β,γ) , E(D), and S2n(β,γ)

p→G2(γ),

where

D =ρτ [ϕ0(X)− ϕ(X;γ) + ǫ− {A− π(X)}∆C(X;β)]− ρτ [ϕ0(X)− ϕ(X;γ) + ǫ] .

Below we show that a) (β0,γ
∗) is the minimizer of G1(β,γ)+G2(γ), b) (β0,γ

∗) is the unique

minimizer. The consistency then follows from the argmax continuous mapping theorem under

Assumption (A7).

Denote K1 = ϕ0(X)− ϕ(X;γ) + ǫ, K2 = {A− π(X)}∆C(X;β). By Lemma 2,

D =− τK21{K1 ≥ 0}+ (1− τ)K21{K1 < 0}+ (K2 −K1)1{K1 ≥ 0}1{K2 > K1}

+ (K1 −K2)1{K1 < 0}1{K2 < K1}.
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Since ǫ ⊥ A|X and Pr(A|X) = π(X), applying double expectation rule with X, we have

E[−τK21{K1 ≥ 0}] = E[(1− τ)K21{K1 < 0}] = 0. Thus,

G1(β,γ) = E[(K2−K1)1{K1 ≥ 0}1{K2 > K1}]+E[(K1−K2)1{K1 < 0}1{K2 < K1}]. (18)

It is easy to check G1(β,γ) ≥ 0 and achieves minimal value 0 at point (β0,γ) for all γ ∈ Γ.

In addition, by A6, we know G2(γ) has unique minimizer γ∗. Combining the above two facts,

a) is proved.

Combining A4, A8 and (18), we could prove G1(β,γ) > 0 for all β 6= β0 and γ ∈ Γ. So

b) holds.

Proof of Theorem 3.

Proof. (a) When M(x) = Hα(x), the proof follows similar steps as Theorem 1. The only

difference is that G1(β,γ) takes a different expression now and we need to redo the proof of 1)

G1(β,γ) > 0 ∀β 6= β0, γ ∈ Γ, and 2) G1(β0,γ) = 0 ∀γ ∈ Γ. By definition, G1(β,γ) , E(D),

where

D = Hα [ϕ0(X)− ϕ(X;γ) + ǫ− {A− π(X)}∆C(X;β)]−Hα [ϕ0(X)− ϕ(X;γ) + ǫ] .

Then, 2) holds immediately. Denote K1 = ϕ0(X)−ϕ(X;γ)+ǫ, K2 = {A−π(X)}∆C(X;β).

We have the following four cases:

1. If K1 > α then Hα(K1 −K2) ≥ α(K1 −K2)− 0.5α2. Thus, D ≥ −αK2;

2. If K1 < −α then Hα(K1 −K2) ≥ α(K2 −K1)− 0.5α2. Thus, D ≥ αK2;

3. If K1 ∈ [−α,α] and K1 −K2 ∈ [−α,α] then D = 1/2(K1 −K2)
2 − 1/2K2

1 = −K1K2 +

1/2K2
2 ;

4. If K1 ∈ [−α,α] and K1 − K2 6∈ [−α,α] then Hα(K1 − K2) ≥ 1/2(K1 − K2)
2 −

{

1/2(α + |K2|)2 −
[

α(α+ |K2|)− 1/2α2
]}

= 1/2(K1 − K2)
2 − 1/2K2

1 . Thus, D ≥
1/2(K1 −K2)

2 − 1/2K2
1 − 1/2K2

2 = −K1K2.

Combining the above four equalities and inequalities,

G1(β,γ) ≥E[−αK21{K1 > α}] + E[αK21{K1 < −α}] + E[−K1K21{K1 ∈ [−α,α]}]

+ E
[

1/2K2
21 ({K1 ∈ [−α,α]} ∪ {K1 −K2 ∈ [−α,α]})

]
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Since ǫ ⊥ A|X and Pr(A|X) = π(X), applying double expectation rule with X, we have

E[−αK21{K1 > α}] = E[αK21{K1 < −α}] = E[−K1K21{K1 ∈ [−α,α]}] = 0. Thus,

G1(β;γ) ≥ E
[

1/2K2
21 ({K1 ∈ [−α,α]} ∪ {K1 −K2 ∈ [−α,α]})

]

. (19)

Combining (19), A4 and A8, we can check that 1) holds. Thus, part (a) is proved.

(b) When M(x) = Jǫ(x), similarly D = Jǫ (K1 −K2)− Jǫ (K1). Notice that we have the

following three cases:

1. If K1 > ǫ then D ≥ −K2;

2. If K1 < −ǫ then D ≥ K2;

3. If K1 ∈ [−ǫ, ǫ] then D ≥ 0;

The rest of the proof follows similar steps as part (a).

Proof of Theorem 5.

Proof. From Theorem 1, βτ = β0. Plugging this into Theorem 4 and applying double

expectation rules, we have

J(τ) = E

[

fǫ

(

X̃Tγ(τ)− ϕ0(X)|X
)

(

π(X){1 − π(X)}X̃X̃T 0

0 X̃X̃T

)]

and

Σ(τ, τ) = E

{

[

τ − 1
{

ǫ < X̃Tγ(τ)− ϕ0(X)
}]2

(

π(X){1 − π(X)}X̃X̃T 0

0 X̃X̃T

)}

.

Thus,
√
n(β̂(τ)−β0)

d→N(0, J−1
11 (τ)Σ11(τ, τ)J

−1
11 (τ)), where J−1

11 (τ) and Σ11(τ, τ) are defined

as in Theorem 5. Conditional on X, 1
{

ǫ < X̃Tγ(τ)− ϕ0(X)
}

is a binomial random variable

with p = Pr
(

ǫ < X̃Tγ(τ)− ϕ0(X)
)

. Then, E

{

[

τ − 1{ǫ < X̃Tγ(τ)− ϕ0(X)}
]2

|X
}

= (p−

τ)2+p(1−p) ≤ τ2+|1−2τ |. Thus, Σ11(τ, τ) ≤
(

τ2 + |1− 2τ |
)

E
[

π(X){1 − π(X)}X̃X̃T

]

.

Appendix B: Additional Simulation Results

We conducted additional simulations with non-constant propensity scores. Specifically, we

considered the following examples.
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Examples with error terms independent with treatment

We consider the following two models with p=3,

• Model I:

Yi = 1 + (Xi1 −Xi2)(Xi1 +Xi3) + {Ai − π(Xi)}βT

0X̃i + σ(Xi)ǫi,

where Xi = (Xi1,Xi2,Xi3)
T are multivariate normal with mean 0, variance 1, and

Corr(Xij ,Xik) = 0.5|j−k|, X̃i = (1,XT

i )
T and β0 = (0, 1,−1, 1)T .

• Model II:

Yi = γT

0X̃i + {Ai − π(Xi)}βT

0X̃i + σ(Xi)ǫi,

where γT

0 = (0.5, 4, 1,−3), and Xi, X̃i and β0 are the same as Model I.

We take linear forms for both the baseline and the contrast functions, where ϕ(X;γ) =

γTX̃ and C(X;β) = βTX̃. We assume the propensity scores π(·) are known, and we study

the non-constant case (π(Xi) = logit(Xi1−Xi2)) here. In addition, We consider two different

σ(Xi) functions, i.e., the homogeneous case with σ(Xi) = 1, and the heterogenous case with

σ(Xi) = 0.5 + (Xi1 −Xi2)
2. The simulation results are given in Table 6 and Table 7.

We firstly notice that lsA-learning works much worse under the heterogeneous errors, while

all other methods are generally less affected by the heterogeneity of the errors. When the

baseline function is misspecified as in Model I, under the homogeneous normal errors, RR(H)

works slightly better than lsA-learning, while RR(ρ0.25) works the worst. The difference in

general is small. For the homogeneous log-normal errors, again RR(H) works the best, while

RR(ρ0.5) and RR(ρ0.25) work slightly worse. Here lsA-learning has the worst performance.

Under the homogeneous Cauchy errors, the lsA-learning is no longer consistent and work the

worst. Both RR(ρ0.5) and RR(H) have good performance under the homogeneous Cauchy

errors. When baseline function is correctly specified as in Model II, under homogeneous

normal errors, lsA-learning performs the best. However, in this case RR(H) also has a

very close performance. Under homogeneous log-normal errors, RR(ρ0.25) work the best

and lsA-learning work the worst. Under homogeneous Cauchy errors, RR(ρ0.5) has the best

performance and RR(H) has a close performance. lsA-learning is again not consistent.
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Examples with error terms interacted with treatment

We consider the following model with p=2,

Yi = 1 + 0.5 sin[π(Xi1 −Xi2)] + 0.25(1 +Xi1 + 2Xi2)
2 + (Ai − π(Xi))θ

T

0X̃i + σ(Xi, Ai)ǫi,

where Xi = (Xi1,Xi2)
T, X̃i = (1,XT

i )
T, σ(Xi, Ai) = 1 + Aid0X

2
i1, θ

T

0 = (0.5, 2,−1) and Xik

are i.i.d. Uniform[-1,1]. We take linear forms for both the baseline and the contrast functions,

where ϕ(X;γ) = γTX̃, C(X;β) = βTW and W = (X̃,X2
1 ,X

2
2 ,X1X2). d0 = 5, 10 or 15.

The error terms ǫi follows i.i.d. N(0,1) or Gamma(1,1)-1 distribution. The propensity scores

π(·) are known, and we consider the non-constant case (π(Xi) = logit(Xi1−Xi2)) here. The

simulation results are given in Table 8.

Based on Theorem 6 of the main paper, δµ column for the lsA-learning method in Table 8

converges to 0 as sample size increases. Under Normal error terms, we have δ0.5 = δµ. Thus,

the δ0.5 column for the lsA-learning method under Normal error also converges to 0. All other

columns in Table 8 converge to a positive constant instead of 0 as sample size goes to infinity.

RR(H) and RR(ρ0.5) perform similarly in Table 8. We also find even though lsA-learning

outperform all other methods in δµ when sample size is large. It may be worse than RR(ρ0.5)

and RR(H) when sample size is small due to the fact that lsA-learning is inefficient under

the heteroscedastic or skewed errors. Last, we find that lsA-learning, RR(ρ0.5) and RR(ρ0.25)

perform best at the columns δµ, δ0.5 and δ0.25 accordingly. The reason is given in the Remark

under Theorem 2 of the main paper.
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Table 1: Summary result of Model I with constant propensity scores. LS stands for lsA-
learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25)
stands for robust regression with pinball loss and parameter τ = 0.25. Huber stands for robust
regression with Huber loss, where parameter α is tuned automatically with R function rlm.
Column δ0.5 is multiplied by 10.

Homogeneous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 1.32 (0.040) 80.7 1.06 2.36 (0.081) 75.7 1.57 58.4 3.75
P(0.5) 1.44 (0.042) 80.1 1.13 1.73 (0.051) 78.0 1.31 2.69 (0.077) 75.2 1.63
P(0.25) 1.90 (0.057) 78.3 1.34 1.63 (0.051) 79.0 1.29 5.29 (0.168) 70.4 2.25
Huber 1.15 (0.034) 81.9 0.93 1.45 (0.044) 79.9 1.13 2.61 (0.072) 74.9 1.66

200 LS 0.68 (0.021) 85.6 0.59 1.10 (0.033) 82.0 0.91 58.7 3.70
P(0.5) 0.73 (0.021) 85.3 0.62 0.78 (0.021) 84.1 0.70 1.23 (0.037) 81.3 0.99
P(0.25) 0.92 (0.028) 84.0 0.75 0.70 (0.023) 86.0 0.59 2.48 (0.079) 75.7 1.64
Huber 0.58 (0.017) 86.8 0.50 0.66 (0.018) 85.5 0.58 1.24 (0.035) 80.8 1.03

400 LS 0.33 (0.009) 90.3 0.26 0.56 (0.016) 87.1 0.46 59.2 3.61
P(0.5) 0.35 (0.010) 90.0 0.29 0.37 (0.010) 89.0 0.34 0.56 (0.016) 87.1 0.48
P(0.25) 0.43 (0.013) 89.1 0.34 0.33 (0.010) 90.7 0.25 1.16 (0.037) 82.9 0.86
Huber 0.28 (0.008) 91.1 0.22 0.31 (0.009) 90.2 0.27 0.58 (0.017) 86.7 0.49

800 LS 0.17 (0.005) 93.2 0.13 0.26 (0.008) 90.9 0.23 59.4 3.59
P(0.5) 0.17 (0.005) 93.1 0.13 0.19 (0.005) 92.1 0.17 0.29 (0.009) 90.7 0.24
P(0.25) 0.22 (0.007) 92.4 0.16 0.18 (0.006) 93.6 0.12 0.59 (0.019) 87.3 0.48
Huber 0.14 (0.004) 93.8 0.11 0.16 (0.005) 93.1 0.14 0.29 (0.008) 90.5 0.25

Heterogenous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 3.24 (0.110) 74.7 1.70 8.98 (0.561) 68.6 2.44 56.2 4.05
P(0.5) 1.70 (0.060) 80.5 1.08 1.80 (0.064) 80.1 1.08 3.45 (0.124) 75.1 1.69
P(0.25) 2.50 (0.085) 77.4 1.42 2.51 (0.079) 76.8 1.46 9.13 (0.341) 67.2 2.66
Huber 1.70 (0.057) 80.4 1.10 1.87 (0.063) 79.2 1.16 4.27 (0.155) 72.8 1.93

200 LS 1.54 (0.050) 80.6 1.06 4.71 (0.244) 73.4 1.85 55.2 4.17
P(0.5) 0.78 (0.028) 86.7 0.53 0.90 (0.032) 85.3 0.63 1.49 (0.052) 81.9 0.95
P(0.25) 1.16 (0.039) 83.5 0.81 1.23 (0.039) 82.0 0.91 3.95 (0.150) 73.2 1.90
Huber 0.77 (0.025) 86.4 0.55 0.94 (0.032) 84.5 0.69 1.94 (0.071) 79.3 1.19

400 LS 0.80 (0.026) 86.0 0.58 2.69 (0.136) 77.8 1.34 54.7 4.26
P(0.5) 0.39 (0.013) 90.5 0.27 0.44 (0.017) 89.6 0.32 0.71 (0.024) 86.9 0.50
P(0.25) 0.56 (0.019) 88.8 0.37 0.66 (0.020) 86.9 0.50 1.70 (0.055) 79.6 1.17
Huber 0.38 (0.012) 90.4 0.27 0.48 (0.017) 88.8 0.36 0.91 (0.029) 84.9 0.65

800 LS 0.41 (0.013) 89.9 0.29 1.35 (0.150) 83.1 0.82 56.5 4.00
P(0.5) 0.18 (0.006) 93.6 0.12 0.20 (0.007) 92.6 0.16 0.36 (0.013) 91.0 0.25
P(0.25) 0.28 (0.009) 92.2 0.18 0.31 (0.010) 90.8 0.24 0.89 (0.031) 85.8 0.60
Huber 0.19 (0.006) 93.3 0.13 0.22 (0.007) 92.1 0.18 0.47 (0.017) 89.2 0.34
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Table 2: Summary result of Model II with constant propensity scores. LS stands for lsA-
learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25)
stands for robust regression with pinball loss and parameter τ = 0.25. Huber stands for robust
regression with Huber loss, where parameter α is tuned automatically with R function rlm.
Column δ0.5 is multiplied by 10.

Homogeneous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 0.24 (0.006) 91.1 0.21 1.23 (0.061) 82.4 0.87 58.6 3.73
P(0.5) 0.36 (0.010) 89.0 0.32 0.39 (0.012) 88.8 0.34 0.80 (0.024) 84.2 0.69
P(0.25) 0.45 (0.012) 87.8 0.40 0.13 (0.004) 93.4 0.12 2.37 (0.083) 76.0 1.49
Huber 0.25 (0.007) 90.8 0.22 0.31 (0.010) 90.3 0.26 0.99 (0.029) 82.4 0.84

200 LS 0.11 (0.003) 93.7 0.10 0.52 (0.018) 87.3 0.45 58.7 3.69
P(0.5) 0.17 (0.005) 92.4 0.16 0.17 (0.005) 92.4 0.15 0.32 (0.009) 89.5 0.30
P(0.25) 0.20 (0.005) 91.8 0.18 0.06 (0.002) 95.6 0.05 1.03 (0.033) 82.1 0.88
Huber 0.12 (0.003) 93.6 0.11 0.13 (0.003) 93.5 0.12 0.43 (0.013) 87.9 0.40

400 LS 0.05 (0.001) 95.7 0.05 0.26 (0.008) 90.7 0.23 59.4 3.60
P(0.5) 0.09 (0.002) 94.5 0.08 0.09 (0.002) 94.5 0.08 0.15 (0.004) 92.8 0.14
P(0.25) 0.10 (0.002) 94.2 0.09 0.03 (0.001) 96.9 0.02 0.44 (0.012) 87.9 0.39
Huber 0.06 (0.001) 95.5 0.05 0.06 (0.002) 95.4 0.06 0.21 (0.006) 91.6 0.19

800 LS 0.03 (0.001) 96.9 0.03 0.13 (0.004) 93.5 0.11 59.4 3.58
P(0.5) 0.04 (0.001) 96.1 0.04 0.04 (0.001) 96.2 0.04 0.07 (0.002) 95.1 0.06
P(0.25) 0.05 (0.001) 95.8 0.05 0.01 (0.000) 97.9 0.01 0.20 (0.005) 91.5 0.19
Huber 0.03 (0.001) 96.8 0.03 0.03 (0.001) 96.8 0.03 0.10 (0.002) 94.2 0.09

Heterogenous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 1.97 (0.072) 79.8 1.13 7.75 (0.514) 70.4 2.22 56.4 4.02
P(0.5) 0.84 (0.029) 86.1 0.55 1.21 (0.045) 84.3 0.74 1.82 (0.071) 80.5 1.07
P(0.25) 1.37 (0.049) 82.1 0.90 1.56 (0.051) 80.5 1.04 6.20 (0.261) 69.8 2.25
Huber 0.84 (0.031) 85.9 0.57 1.33 (0.046) 82.8 0.85 2.69 (0.106) 77.0 1.42

200 LS 0.99 (0.035) 84.7 0.66 4.16 (0.237) 75.2 1.62 55.1 4.19
P(0.5) 0.41 (0.014) 90.2 0.28 0.58 (0.024) 89.4 0.37 0.79 (0.030) 86.7 0.52
P(0.25) 0.64 (0.021) 87.4 0.45 0.74 (0.024) 86.1 0.54 2.48 (0.096) 76.9 1.40
Huber 0.39 (0.013) 90.3 0.27 0.69 (0.027) 87.7 0.45 1.17 (0.044) 83.4 0.78

400 LS 0.51 (0.018) 89.0 0.35 2.48 (0.133) 79.3 1.20 54.7 4.25
P(0.5) 0.20 (0.007) 93.2 0.14 0.29 (0.011) 92.6 0.17 0.32 (0.011) 91.2 0.22
P(0.25) 0.30 (0.009) 91.3 0.22 0.39 (0.012) 89.9 0.28 0.99 (0.030) 83.0 0.78
Huber 0.20 (0.007) 93.2 0.14 0.34 (0.012) 91.4 0.22 0.53 (0.016) 88.4 0.37

800 LS 0.25 (0.008) 92.2 0.17 1.25 (0.159) 84.2 0.73 56.4 4.00
P(0.5) 0.10 (0.004) 95.3 0.07 0.14 (0.006) 94.7 0.09 0.16 (0.006) 93.9 0.11
P(0.25) 0.14 (0.005) 94.0 0.10 0.18 (0.006) 92.9 0.14 0.49 (0.015) 88.0 0.39
Huber 0.09 (0.004) 95.3 0.06 0.17 (0.006) 93.9 0.11 0.26 (0.009) 91.8 0.19
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Table 3: Summary results with constant propensity scores when errors interacted with treat-
ment. Least square stands for lsA-learning. Pinball(0.5) stands for robust regression with
pinball loss and parameter τ = 0.5. Pinball(0.25) stands for robust regression with pinball
loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss, where
parameter α is tuned automatically with R function rlm.

Least Square Pinball(0.5) Pinball(0.25) Huber

Error d0 n δµ δ0.5 δ0.25 δµ δ0.5 δ0.25 δµ δ0.5 δ0.25 δµ δ0.5 δ0.25

Normal 5 100 0.16 0.16 0.31 0.16 0.16 0.27 0.25 0.25 0.17 0.14 0.14 0.26
200 0.09 0.09 0.24 0.10 0.10 0.19 0.18 0.18 0.09 0.08 0.08 0.19
400 0.05 0.05 0.18 0.07 0.07 0.12 0.15 0.15 0.05 0.05 0.05 0.13
800 0.02 0.02 0.14 0.05 0.05 0.09 0.14 0.14 0.04 0.03 0.03 0.09

10 100 0.28 0.28 0.92 0.22 0.22 0.81 0.39 0.39 0.40 0.21 0.21 0.82
200 0.19 0.19 0.85 0.15 0.15 0.71 0.33 0.33 0.28 0.13 0.13 0.72
400 0.12 0.12 0.79 0.10 0.10 0.60 0.30 0.30 0.23 0.09 0.09 0.63
800 0.06 0.06 0.73 0.07 0.07 0.50 0.27 0.27 0.22 0.06 0.06 0.54

15 100 0.35 0.35 1.55 0.25 0.25 1.40 0.47 0.47 0.62 0.26 0.26 1.43
200 0.27 0.27 1.48 0.18 0.18 1.31 0.45 0.45 0.45 0.18 0.18 1.34
400 0.19 0.19 1.47 0.13 0.13 1.17 0.44 0.44 0.37 0.12 0.12 1.23
800 0.12 0.12 1.39 0.09 0.09 1.03 0.41 0.41 0.35 0.08 0.08 1.07

Gamma 5 100 0.15 0.18 0.31 0.15 0.11 0.16 0.22 0.12 0.09 0.12 0.09 0.15
200 0.09 0.12 0.26 0.10 0.06 0.10 0.18 0.08 0.05 0.08 0.05 0.09
400 0.05 0.07 0.21 0.08 0.03 0.07 0.16 0.06 0.04 0.06 0.02 0.07
800 0.02 0.04 0.17 0.07 0.03 0.06 0.15 0.06 0.03 0.05 0.02 0.07

10 100 0.26 0.33 0.90 0.22 0.16 0.54 0.39 0.13 0.27 0.22 0.14 0.50
200 0.19 0.29 0.88 0.17 0.08 0.44 0.37 0.10 0.22 0.17 0.07 0.41
400 0.12 0.24 0.87 0.13 0.04 0.39 0.35 0.08 0.19 0.14 0.03 0.36
800 0.06 0.17 0.78 0.12 0.03 0.37 0.33 0.07 0.19 0.13 0.02 0.35

15 100 0.36 0.57 1.52 0.30 0.31 0.98 0.53 0.19 0.40 0.32 0.28 0.89
200 0.28 0.53 1.51 0.22 0.19 0.81 0.55 0.16 0.29 0.24 0.16 0.71
400 0.19 0.47 1.50 0.17 0.13 0.73 0.57 0.15 0.26 0.21 0.11 0.63
800 0.11 0.43 1.50 0.15 0.11 0.71 0.58 0.15 0.24 0.18 0.09 0.62
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Table 4: Analysis results for AIDS data. Est. stands for estimate; SE stands for standard
error; PV stands for p-value. All p-values which are significant at level 0.1 are highlighted.

Least Square Pinball(0.5) Pinball(0.25) Huber

Variable Est. SE PV Est. SE PV Est. SE PV Est. SE PV

intercept -42.61 32.93 0.196 -33.45 37.32 0.370 -35.77 39.17 0.361 -42.76 31.40 0.173
age 3.13 0.85 0.000 2.62 0.97 0.007 2.46 1.06 0.020 2.80 0.79 0.000
homosexuality -40.66 16.73 0.015 -33.18 17.68 0.061 -35.38 18.28 0.053 -27.33 15.19 0.072
race -25.70 17.69 0.146 -33.56 18.12 0.064 -34.21 18.32 0.062 -25.29 16.08 0.116

Table 5: Result of estimated values and their corresponding 95% confidence interval for four
methods based on IPWE and AIPWE.SE stands for standard error. CI stands for 95%
confidence interval.

Estimator method Value SE CI

IPWE Least Square 405.05 6.72 (391.88, 418.22)
Pinball(0.5) 406.77 6.71 (393.63, 419.92)
Pinball(0.25) 406.07 6.73 (392.87, 419.26)
Huber 407.03 6.71 (393.87, 420.18)

AIPWE Least Square 404.39 6.12 (392.40, 416.38)
Pinball(0.5) 405.93 6.13 (393.92, 417.94)
Pinball(0.25) 403.60 6.62 (390.62, 416.58)
Huber 406.00 6.15 (393.95, 418.04)
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Table 6: Summary result of Model I with non-constant propensity scores. LS stands for
lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5.
P(0.25) stands for robust regression with pinball loss and parameter τ = 0.25. Huber stands
for robust regression with Huber loss, where parameter α is tuned automatically with R
function rlm. Column δ0.5 is multiplied by 10.

Homogeneous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 1.70 (0.061) 81.9 0.91 2.90 (0.114) 77.6 1.34 59.3 3.61
P(0.5) 1.90 (0.069) 80.1 1.09 2.13 (0.073) 78.3 1.25 3.54 (0.128) 75.7 1.57
P(0.25) 2.35 (0.080) 78.2 1.33 1.95 (0.076) 80.4 1.08 8.45 (0.431) 69.8 2.28
Huber 1.51 (0.053) 82.1 0.89 1.77 (0.065) 80.6 1.02 3.67 (0.127) 75.4 1.60

200 LS 0.77 (0.026) 86.8 0.50 1.35 (0.045) 82.2 0.91 59.2 3.63
P(0.5) 0.88 (0.028) 85.5 0.60 1.00 (0.029) 83.0 0.79 1.54 (0.050) 81.1 1.00
P(0.25) 1.06 (0.035) 84.5 0.68 0.83 (0.027) 85.9 0.59 3.61 (0.143) 74.7 1.70
Huber 0.68 (0.022) 87.3 0.46 0.81 (0.025) 85.2 0.62 1.58 (0.052) 80.7 1.03

400 LS 0.39 (0.012) 90.2 0.28 0.65 (0.020) 86.9 0.48 58.0 3.79
P(0.5) 0.43 (0.013) 89.3 0.32 0.47 (0.014) 88.4 0.38 0.73 (0.022) 86.5 0.51
P(0.25) 0.53 (0.016) 88.5 0.38 0.41 (0.013) 90.5 0.27 1.50 (0.049) 81.7 0.96
Huber 0.34 (0.010) 90.6 0.25 0.39 (0.012) 89.6 0.30 0.72 (0.022) 86.3 0.53

800 LS 0.18 (0.006) 93.3 0.13 0.32 (0.010) 90.2 0.27 58.3 3.75
P(0.5) 0.21 (0.007) 92.7 0.15 0.24 (0.007) 91.5 0.20 0.36 (0.011) 90.3 0.27
P(0.25) 0.28 (0.009) 92.4 0.17 0.21 (0.007) 93.4 0.13 0.78 (0.026) 86.9 0.50
Huber 0.16 (0.005) 93.7 0.11 0.19 (0.006) 92.6 0.15 0.37 (0.010) 89.9 0.28

Heterogenous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 2.84 (0.111) 78.2 1.33 9.96 (0.773) 72.0 2.06 55.2 4.18
P(0.5) 2.01 (0.082) 80.6 1.09 2.18 (0.080) 79.2 1.21 4.18 (0.189) 74.1 1.81
P(0.25) 2.91 (0.110) 76.7 1.52 3.22 (0.105) 74.2 1.76 10.62 (0.475) 65.3 2.87
Huber 1.90 (0.074) 80.9 1.06 2.38 (0.090) 78.1 1.32 5.06 (0.230) 71.9 2.04

200 LS 1.46 (0.053) 83.1 0.83 4.47 (0.371) 76.8 1.51 56.3 4.04
P(0.5) 0.92 (0.033) 86.4 0.55 0.98 (0.035) 85.3 0.64 1.69 (0.065) 81.5 0.98
P(0.25) 1.35 (0.049) 83.3 0.81 1.47 (0.049) 81.6 0.97 4.73 (0.241) 71.9 2.05
Huber 0.86 (0.030) 86.6 0.52 1.02 (0.036) 84.7 0.68 2.11 (0.079) 79.3 1.18

400 LS 0.74 (0.029) 87.4 0.47 2.65 (0.402) 81.4 1.04 56.2 4.06
P(0.5) 0.45 (0.016) 90.2 0.29 0.44 (0.017) 89.5 0.34 0.79 (0.029) 87.2 0.49
P(0.25) 0.66 (0.025) 88.3 0.41 0.70 (0.023) 86.9 0.50 2.12 (0.091) 79.5 1.19
Huber 0.43 (0.016) 90.2 0.28 0.48 (0.018) 89.0 0.36 1.01 (0.036) 85.0 0.65

800 LS 0.36 (0.013) 90.8 0.25 1.09 (0.066) 85.0 0.69 56.3 4.02
P(0.5) 0.21 (0.008) 93.2 0.14 0.24 (0.009) 92.3 0.19 0.39 (0.014) 90.5 0.27
P(0.25) 0.33 (0.013) 91.7 0.21 0.36 (0.012) 90.8 0.25 1.01 (0.034) 84.9 0.65
Huber 0.20 (0.008) 93.2 0.14 0.25 (0.009) 92.1 0.19 0.49 (0.016) 89.1 0.34
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Table 7: Summary result of Model II with non-constant propensity scores. LS stands for
lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5.
P(0.25) stands for robust regression with pinball loss and parameter τ = 0.25. Huber stands
for robust regression with Huber loss, where parameter α is tuned automatically with R
function rlm. Column δ0.5 is multiplied by 10.

Homogeneous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 0.36 (0.011) 89.8 0.29 1.65 (0.085) 80.8 1.06 58.7 3.69
P(0.5) 0.57 (0.017) 86.9 0.46 0.61 (0.026) 86.4 0.55 1.31 (0.045) 81.7 0.93
P(0.25) 0.65 (0.020) 86.2 0.52 0.22 (0.008) 91.7 0.20 4.67 (0.312) 74.7 1.64
Huber 0.38 (0.012) 89.5 0.30 0.45 (0.018) 88.3 0.40 1.70 (0.060) 79.5 1.14

200 LS 0.16 (0.004) 92.9 0.14 0.74 (0.030) 85.6 0.61 59.1 3.64
P(0.5) 0.25 (0.007) 91.2 0.21 0.26 (0.008) 90.7 0.24 0.52 (0.017) 87.8 0.41
P(0.25) 0.30 (0.008) 90.3 0.26 0.09 (0.003) 94.8 0.08 1.69 (0.074) 81.3 0.92
Huber 0.17 (0.005) 92.8 0.14 0.19 (0.006) 92.2 0.17 0.70 (0.022) 86.2 0.53

400 LS 0.08 (0.002) 95.1 0.06 0.36 (0.013) 89.7 0.30 58.0 3.79
P(0.5) 0.12 (0.003) 93.8 0.10 0.12 (0.003) 93.8 0.10 0.22 (0.006) 91.6 0.19
P(0.25) 0.14 (0.004) 93.3 0.12 0.04 (0.001) 96.5 0.03 0.63 (0.021) 86.5 0.49
Huber 0.08 (0.002) 95.0 0.07 0.09 (0.002) 94.8 0.07 0.30 (0.009) 90.3 0.26

800 LS 0.04 (0.001) 96.5 0.03 0.18 (0.006) 92.3 0.16 58.2 3.76
P(0.5) 0.06 (0.002) 95.6 0.05 0.06 (0.002) 95.6 0.05 0.10 (0.003) 94.4 0.09
P(0.25) 0.07 (0.002) 95.3 0.06 0.02 (0.001) 97.5 0.02 0.29 (0.009) 90.6 0.23
Huber 0.04 (0.001) 96.4 0.03 0.04 (0.001) 96.3 0.04 0.14 (0.004) 93.2 0.12

Heterogenous Error

Normal Log-Normal Cauchy

n method mse PCD δ0.5 mse PCD δ0.5 mse PCD δ0.5

100 LS 1.45 (0.059) 82.9 0.85 8.53 (0.784) 72.4 2.01 54.9 4.22
P(0.5) 0.94 (0.034) 85.6 0.61 1.29 (0.058) 83.3 0.86 2.27 (0.132) 78.9 1.24
P(0.25) 1.46 (0.051) 81.5 0.96 1.78 (0.071) 78.2 1.30 7.88 (0.422) 68.1 2.46
Huber 0.89 (0.034) 86.1 0.57 1.46 (0.067) 81.7 0.99 3.28 (0.157) 75.1 1.65

200 LS 0.84 (0.035) 86.6 0.53 3.85 (0.358) 77.6 1.43 55.9 4.09
P(0.5) 0.44 (0.016) 90.0 0.29 0.60 (0.024) 89.0 0.39 0.87 (0.034) 86.3 0.56
P(0.25) 0.69 (0.025) 87.0 0.49 0.75 (0.024) 85.5 0.59 3.08 (0.179) 75.3 1.58
Huber 0.43 (0.016) 90.3 0.28 0.66 (0.025) 87.7 0.47 1.32 (0.050) 82.4 0.87

400 LS 0.44 (0.020) 90.3 0.28 2.34 (0.393) 82.4 0.95 55.9 4.09
P(0.5) 0.23 (0.009) 92.9 0.16 0.28 (0.011) 92.5 0.19 0.39 (0.015) 90.8 0.26
P(0.25) 0.33 (0.011) 91.0 0.23 0.36 (0.012) 90.1 0.27 1.25 (0.048) 82.8 0.82
Huber 0.22 (0.008) 93.1 0.15 0.31 (0.012) 91.7 0.21 0.60 (0.022) 88.0 0.43

800 LS 0.23 (0.009) 93.0 0.15 0.90 (0.057) 86.2 0.60 56.3 4.03
P(0.5) 0.11 (0.004) 95.0 0.07 0.14 (0.005) 94.8 0.09 0.18 (0.006) 93.6 0.12
P(0.25) 0.17 (0.006) 93.7 0.12 0.18 (0.006) 93.0 0.14 0.59 (0.017) 87.3 0.44
Huber 0.10 (0.004) 95.1 0.07 0.15 (0.006) 94.2 0.11 0.29 (0.010) 91.4 0.21
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Table 8: Summary results with non-constant propensity scores when errors interacted with
treatment. Least square stands for lsA-learning. Pinball(0.5) stands for robust regression
with pinball loss and parameter τ = 0.5. Pinball(0.25) stands for robust regression with
pinball loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss,
where parameter α is tuned automatically with R function rlm.

Least Square Pinball(0.5) Pinball(0.25) Huber

Error d0 n δµ δ0.5 δ0.25 δµ δ0.5 δ0.25 δµ δ0.5 δ0.25 δµ δ0.5 δ0.25

Normal 5 100 0.19 0.19 0.36 0.20 0.20 0.34 0.30 0.30 0.23 0.17 0.17 0.33
200 0.11 0.11 0.28 0.13 0.13 0.25 0.21 0.21 0.12 0.11 0.11 0.23
400 0.06 0.06 0.21 0.08 0.08 0.17 0.17 0.17 0.06 0.06 0.06 0.16
800 0.03 0.03 0.16 0.06 0.06 0.11 0.15 0.15 0.04 0.04 0.04 0.11

10 100 0.29 0.29 0.93 0.24 0.24 0.88 0.44 0.44 0.50 0.24 0.24 0.88
200 0.21 0.21 0.92 0.18 0.18 0.84 0.37 0.37 0.34 0.17 0.17 0.83
400 0.13 0.13 0.87 0.14 0.14 0.75 0.32 0.32 0.25 0.12 0.12 0.75
800 0.08 0.08 0.80 0.11 0.11 0.64 0.28 0.28 0.21 0.08 0.08 0.64

15 100 0.35 0.35 1.58 0.27 0.27 1.51 0.53 0.53 0.72 0.26 0.26 1.51
200 0.29 0.29 1.56 0.21 0.21 1.47 0.50 0.50 0.54 0.20 0.20 1.47
400 0.21 0.21 1.58 0.17 0.17 1.37 0.48 0.48 0.39 0.15 0.15 1.38
800 0.14 0.14 1.52 0.14 0.14 1.26 0.45 0.45 0.31 0.12 0.12 1.27

Gamma 5 100 0.18 0.21 0.34 0.20 0.17 0.24 0.28 0.18 0.14 0.18 0.15 0.21
200 0.10 0.14 0.29 0.13 0.10 0.15 0.21 0.11 0.07 0.11 0.07 0.13
400 0.06 0.09 0.23 0.10 0.05 0.10 0.18 0.07 0.04 0.07 0.03 0.08
800 0.03 0.06 0.19 0.08 0.03 0.06 0.16 0.06 0.03 0.06 0.02 0.07

10 100 0.27 0.34 0.90 0.28 0.25 0.67 0.46 0.21 0.33 0.28 0.22 0.62
200 0.20 0.32 0.94 0.21 0.16 0.57 0.43 0.14 0.24 0.21 0.13 0.49
400 0.13 0.27 0.92 0.16 0.09 0.46 0.38 0.10 0.18 0.15 0.06 0.39
800 0.08 0.21 0.85 0.13 0.05 0.40 0.35 0.07 0.16 0.13 0.03 0.35

15 100 0.34 0.55 1.49 0.33 0.37 1.09 0.59 0.25 0.46 0.33 0.33 0.99
200 0.27 0.54 1.57 0.26 0.29 1.00 0.60 0.19 0.31 0.27 0.23 0.85
400 0.19 0.50 1.56 0.20 0.21 0.88 0.61 0.15 0.21 0.22 0.14 0.70
800 0.12 0.47 1.58 0.17 0.14 0.76 0.62 0.15 0.18 0.19 0.09 0.63
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