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ABSTRACT
Parkinson’s disease (PD) is a debilitating neurodegenerative disease
excessively affecting millions of patients. Early diagnosis of PD is
critical as manifestation of symptoms occur many years after the
onset of neurodegenration, when more than 60% of dopaminergic
neurons are lost. Since there is no definite diagnosis of PD, the
early management of disease is a significant challenge in the field
of PD therapeutics. Therefore, identifying valid biomarkers that
can characterize the progression of PD has lately received growing
attentions in PD research community. In this paper, we employ a
multi-task learning regression framework for prediction of Parkin-
son’s disease progression, where each task is the prediction of PD
rating scales at one future time point. We then use the model to iden-
tify the important biomarkers predictive of disease progression. We
adopt a graph regularization approach to capture the relationship
between different tasks and penalize large variations of the model at
consecutive future time points. We have carried out comprehensive
experiments using different categories of measurements at baseline
from Parkinson’s Progression Markers Initiative (PPMI) database to
predict the severity of PD, measured by unified PD rating scale. We
use the learned model to identify the biomarkers with significant
contribution in prediction of PD progression. Our results confirm
some of the important biomarkers identified in existing medical
studies, validate some of the biomarkers that have been observed
as a potential marker of PD and discover new biomarkers that have
not yet been investigated.

CCS CONCEPTS
• Applied computing → Health care information systems; •
Computing methodologies → Multi-task learning; • Infor-
mation systems → Data mining;
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1 INTRODUCTION
Parkinson’s disease (PD), one of the most common neurodegen-
erative disorders, is characterized by progressive impairment and
deterioration of dopaminergic neurons resulting in dysfunction
of movement control and non-motor problems such as depression
and anxiety. As many as one million Americans and more than
10 million individuals worldwide are living with Parkinson’s dis-
ease. Both motor and non-motor manifestations of PD significantly
influence the patients and deteriorate their quality of life.

To date, there is no objective medical test to make a certain
diagnosis of PD. Instead, the diagnosis is performed using the as-
sessment of motor symptoms such as shaking, rigidity, slowness of
movement and postural instability. The motor symptoms however
begin to occur in very late stages of the disease when the dopamine
concentration is significantly reduced by up to 80% [18]. Starting
the treatment at that advanced stage is of little benefit to patients
with PD as the degeneration becomes sever. Accordingly, early
diagnosis of PD is critical in order to use treatments for managing
and delaying disease progression in initial stages. There is a period
of at least 5 years and up to 20 years between the start of neurode-
generation and exhibition of clinical motor symptoms. During this
period, the patients mainly show non-motor symptoms such as
olfactory loss or sleep behavior disorder. These subtle symptoms
are not definitive to be used for disease diagnosis, and may be used
along with other potential biomarkers for identifying patients at
risk of PD. Early diagnosis is therefore a main challenge in the field
of PD therapeutics and the absence of a validated biomarker of
Parkinson’s disease is the major impeding factor in understand-
ing PD progression in order to develop treatments that can delay,
prevent or reverse disease progress.

Recognizing the value of such biomarker discovery, Michael J.
Fox Foundation (MJFF) for Parkinson’s research funded the Parkin-
son’s Progression Markers Initiative (PPMI) in 2011 [17]. The ini-
tiative is assisting scientists to establish markers of PD progression
by collecting clinical and imaging data and biologic samples from
various cohorts. Several clinical rating scales have been also ac-
quired to assess the status of disease in PD patients, such as Unified
Parkinson’s Disease Rating Scale (UPDRS) [21], Montreal Cognitive
Assessment (MOCA) [19] and Scales for Outcomes in Parkinson’s
disease for Autonomic Symptoms (SCOPA-AUT) [33]. Since neu-
rodegerenation of PD advances many years prior to manifestation
of symptoms and the treatment is more effective in early stages,
it is crucial to achieve two key objectives. First, we aim to predict
the progression of PD at multiple future time points measured by
clinical rating scales such as UPDRS. We next focus on identifying
features that are most predictive of PD progression to investigate
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existing evidence for biomarkers and to identify new clinical, bio-
logical and brain imaging markers.

We employ a multi-task learning regression framework to pre-
dict PD progression for up to 4.5 years and to identify important
predictive biomarkers from the learned model. We model the pre-
diction of disease severity quantified by clinical rating scales at a
series of time points as a multi-task learning problem, where each
task is prediction of a clinical scale at one time point. The con-
ventional machine learning frameworks consider only one learner
seeking to solve a single task, independent of the others. In nu-
merous applications, however, there are multiple tasks labeling the
same data instances differently, in different times or conditions.
When the tasks are related, the information learned from each task
can be used to enhance the learning of other tasks. It is therefore
beneficial to learn relevant tasks together simultaneously, as op-
posed to learning each task independently. Multi-task learning uses
the intrinsic relations between multiple tasks to improve the gen-
eralization performance. In this study, a patient’s clinical data at
different consecutive visits cannot be assumed to be fully indepen-
dent. Accordingly, the multi-task learning can benefit prediction of
disease status in all visits by leveraging their relatedness and shared
information across the visits. We use convex fused sparse group
Lasso (cSFGL) formulation that concurrently chooses a shared set
of features for all visits and a particular set of features for each
distinct visit, and at the same time uses fused lasso to integrate the
temporal smoothness [32, 38].

Extensive experimental results have been carried out using data
from PPMI database. We accurately predict the disease progres-
sion over 11 visits that span a course of 4.5 years. We substantiate
the effectiveness of multi-task learning framework for PD progno-
sis compared to single learner methods. We also fully exploit the
method to identify important diagnostic biomakers. Some markers
selected by our experimental results are consistent with findings
from medical and clinical studies. We validate these established
biomarkers and discover new biomarkers that have not been recog-
nized to date. The biomarkers discovered in this study would help
substantially expedite Parkinson’s disease therapeutics research
towards early diagnosis and development of effective treatments.
We now describe related research in this important area.

2 RELATEDWORK
Related research in a number of areas is relevant to this study,
including (i) identifying biomarkers of PD; (ii) multi-task learning
for modeling disease progression; and (iii) methods for capturing
the relatedness of the tasks.

Non-motor symptoms such as sleep disorder and olfactory loss,
in conjunction with other important biomarkers including Cere-
brospinal fluid (CSF) and brain imaging scan data from PPMI are
used in [25] to differentiate two groups of 183 healthy subjects and
401 patients with early Parkinson. Naive Bayes, Support Vector
Machine (SVM), Boosted Trees and Random Forests classifiers are
employed for classification and the best performance is achieved
by SVM. An enhanced probabilistic neural network is used in [10]
with non-motor symptoms, clinical and behavioral assessments
and brain imaging features for differentiating PD patients from sub-
jects whose scans do not exhibit evidence of dopaminergic deficit.

CSF measurements are extensively investigated for identification of
neurodegenerative diseases. These biomarkers have recently been
shown to hold promise in PD diagnosis although these investiga-
tions are in very early stages. A study with 63 early PD patients and
39 healthy normal subjects from PPMI database used multivariate
regression analysis and showed that the amount of particular CSF
biomarkers is slightly but significantly lower in patients with PD
compared to normal control [14]. The identification capability of
these biomarkers however were demonstrated to be weak with
less than 80% accuracy and as a result they need to be used along
with other valid biomarkers to enhance the diagnosis. The men-
tioned study leaves further analysis of predictive performance of
CSF biomarkers and testing them on all PPMI subjects to future
work. Another study presented in [15] also focused on CSF mea-
surements in 660 PPMI subjects at baseline, and used the correlation
of these features with the clinical assessments to identify a subset
of CSF features with significantly different levels in PD patients
compared to healthy control. The existing work in PD biomarker
discovery including the ones mentioned above are all focused on
classifying PD patients from healthy control subjects. They focus
on identifying biomarkers for differentiating the two groups and
are not capable of predicting the progression of disease. Moreover,
these studies do not investigate many other available candidate
biomarkers such as RNA, plasma and serum measurements.

Experimental results have shown advantages of multi-task learn-
ing compared to single independent learners in problems involving
related tasks [1, 4, 9]. Multi-task learning has been effectively used
in a wide variety of applications including object location and
recognition in image processing [3], speech classification [22], data
integration from different web directories [26], identification of
handwritten digits [26] and multiple microarray data integration
in bioinformatics [34]. Multi-task learning approaches have been
lately proposed for modeling the Alzheimer’s disease progression
[38].

There are variousways to impose the relatedness of tasks in order
to incorporate the insight from task connections in joint learning.
The first category of multi-task learning approaches presumes that
all tasks are related and the knowledge in each task is shared with
all others. In this category, all tasks are either considered to have
models close to each other or share a joint set of features [7, 20]. In
the second category of approaches, tasks are arranged in clusters
where tasks in each cluster have models closer to each others. Task
clustering is enforced in [1] by using several clusters of similar
tasks and taking a mixture of Gaussians as a prior instead of a
single Gaussian. A task clustering regularization is used in [6] to
incorporate cluster information in multi-task learning methods
as an extension to kernel learning techniques. A nonparametric
hierarchical Bayesian model is used in [35] to automatically identify
task clusters. Third category of multi task learning methods is
graph structured techniques where the task relationship is captured
using a graph [6]. Each task is represented by a node, and two
nodes are connected with an edge if the corresponding tasks are
related to each other. The similarity degree of a pair of tasks is then
represented by the weight of the linking edge. In this study, we use a
graph to model the task relatedness and integrate our knowledge of
the nature of this relationship into multi-task learning framework.
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3 DATASET
Data used in this paper is obtained fromPPMI database at www.ppmi-
info.org/data at the time of this study. PPMI is a landmark, large-
scale, comprehensive longitudinal study that is currently being
conducted on PD patients as well as healthy normal subjects. The
initiative follows more than 1,000 participants for up to 8 years,
at a network of 33 clinical sites around the world. PPMI is the
first significant observational study created to identify and validate
biomarkers for prediction of PD progression [17]. The goal of this
initiative is using these biomarkers to improve the understanding
of PD progression and provide essential means for controlling PD
in therapeutic trials. PD patients in the PPMI study are de novo
patients, recently diagnosed and unmedicated. The dataset con-
tains an inclusive set of clinical and behavioral assessments, brain
neuroimaging scans and biospecimens including CSF, DNA, RNA,
plasma, serum, urine and cell lines. Baseline data is gathered at
the beginning of the study when the patient performs the initial
screening. Currently, PPMI dataset contains measurements from
12 follow-up visits after the baseline. We use data from 11 visits
carried out during 4.5 years and do not use data from 12th visit due
to the its small sample size.

4 PREDICTION AND PROGRESSION
BIOMARKERS

We now present the problem, summarize features and potential
target scores measured from patients, and review the prediction
model.

4.1 Problem Description
We have access to clinical motor and non-motor assessments, brain
imaging scans, biospecimen collection and lab samples obtained
from 400 patients with early Parkinson’s disease and 200 healthy
control subjects. These measurements and tests are acquired re-
peatedly over a 5-year interval. The disease status is also assessed
multiple times in the recurrent visits using clinical rating scales. The
first objective is to predict the progression of disease by forecasting
the cognitive scores using only the measurements at the baseline.
The second objective is identifying one or more biomarkers of
Parkinson’s disease progression as crucial means to understand the
disease and develop new and more effective treatments. Prediction
of cognitive scores at each future visit can be performed using a
regression model and multi-task learning can be exploited for pre-
diction of the disease rating scales at multiple future visits. By using
multi-task learning, the prediction performance benefits from the
important fact that a subject’s disease status at different time points
are not independent. This temporal information between tasks will
be integrated in the model to enhance the disease prediction perfor-
mance. We then use the model learned from multi-task regression
to find the features most predictive of the progression and their
corresponding importance.

4.2 Features and Targets
We now describe the features extracted from PPMI database. We
group available features into three main categories: (i) clinical as-
sessments, (ii) biological specimen, and (iii) brain imaging scans.

We also discuss in this section, the scores for assessing the status or
severity of PD that are potential targets of the multi-task learning.

4.2.1 Clinical Assessments. This class contains features obtained
from questionnaires answered by patients or their health care pro-
fessionals who perform the examinations on the patients.

Smell Identification Test: Severe olfactory disorders such as
impairment in detecting, distinguishing and recognizing different
smells are observed at early stages of Parkinson’s disease [23].
The study in [23] shows that idiopathic olfactory dysfunction is
associated with a 10% higher risk of developing PD. The University
of Pennsylvania Smell Identification Test (UPSIT) is an accurate,
reliable and long-established smell identification assessment [5]. It
includes four booklets each containing ten pages where each page
includes a distinct odor in a plastic microcapsule. The participant
releases the odor by scratching the container and then identifies
the smell by selecting one of the four choices that best represents
the smell. The maximum possible score is 40 when all the smells are
recognized correctly. The UPSIT feature will be a number between
0 and 40 for each subject.

SleepBehaviorDisorder Screening:Another non-motor symp-
tom of PD is Rapid Eye Movement (REM) sleep Behavior Disorder
(RBD) that generally precedes the neurodegenrative diseases [13].
RBD is a sleep disruption in which the patient physically and sud-
denly acts on vivid, aggressive and unpleasant action dreams. The
dream-enacting behaviors include talking, shouting, kicking, punch-
ing, sitting, jumping from bed or other violent limb movements. A
clinical study has been performed over 12 years on 93 subjects with
RBD that shows the patients with REM sleep disorder are generally
in increased risk of developing neurodegenerative disroders [24].
In this study, 28% of the patients developed neurodegenerative dis-
eases out of which 15% had Parkinson’s disease. RBD Screening
Questionnaire (RBDSQ) is a particular assessment questionnaire
for RBD that evaluates the most significant clinical features of RBD.
It has been extensively studied and validated to be a useful tool
for the screening of RBD in PD patients due to its high sensitivity
and specificity [31]. RBDSQ includes 12 questions with ‘yes’/‘no’
answers. We assign score 1 to ‘yes’ and score 0 to ‘no’ answers. The
RBDSQ feature will be an integer between 0 and 12 for each patient,
where higher scores signify higher probability of RBD disorder.

4.2.2 Biologic Specimens. Biologic specimens used in this study
include cerebrospinal fluid (CSF), plasma, serum and RNA. CSF is
a fluid surrounding the brain and spinal cord that indicates patho-
logical condition of the central nervous system. CSF measurement
is more accessible and less costly than brain imaging. Four CSF
biomarkers of amyloid beta peptide 1-42 (Aβ1-42), total tau (T-tau),
tau phosphorylated at threonine 181 (P-tau181) and α−synuclein
(α−Syn) are extensively studied and identified as sensitive and spe-
cific biomarkers for early diagnostic differentiation of patients with
Alzheimer’s disease (AD) from healthy individuals [29]. The first
study of CSF biomarkers in PPMI study subjects revealed that ra-
tios of these biomarkers might also be important [14]. In this study,
we therefore consider seven CSF features including Aβ1-42, T-tau,
P-tau181, α−Syn as well as ratios T-tau/Aβ1-42, P-tau181/Aβ1-42
and P-tau181/T-tau. Additionally, plasma measurements from 154
PD patients from the PPMI study is analyzed for epidermal growth
factor (EGF) and Apolipoprotein A1 (ApoA1). Lipid fats in the blood
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including total cholesterol, HDL (high-density lipoprotein), LDL
(low-density lipoprotein) and triglycerides were also measured, re-
sulting in 6 plasma features. We also consider the expression of
19 RNA biomarkers that had enough observations as well as one
serum measurement, namely serum Insulin-like Growth Factor 1
(IFG-1).

4.2.3 Brain Imaging. SPECT (Single Photon Emission Comput-
erized Tomography) scan is a type of nuclear imaging that uses
small amounts of a radioactive injection and multiple cameras to
provide rapid dynamic 3D acquisitions. DaTscan is an imaging
agent for use with SPECT to detect dopamine transporters (DaT) in
the brain for patients with Parkinson’s disease. Although DaTscan
cannot diagnose PD, it is used to help confirm a diagnosis. Imaging
studies have shown a distinct decrease in dopamine transporter
binding in subregions of the striatum in PD patients [2]. DatScan
SPECT imaging data acquired at PPMI are processed to compute
binding ratios for each striatal region (left and right caudate, left
and right putamen). Striatal binding ratios(SBR) is calculated by
positioning the regions of interest (ROI) on the four striatal regions
mentioned above as well as on a reference area to derive the count
densities for each of the regions. SBR is then calculated using SBR =
(count density of striatal region/count density of reference region)-
1. We use four SBR features calculated in left and right caudate and
left and right putamen.

4.2.4 Target Scores. MDS-UPDRS: Movement Disorder Soci-
ety revision of the United Parkinson’s Disease Rating Scale (MDS-
UPDRS) is a universal scale for Parkinson’s symptoms created to
comprehensively assess and document the examination of patients
with PD. It includes three sets of clinical examinations. Part I consist
of 13 questions answered by the patient, assessing non-motor expe-
riences of their daily life such as cognitive impairment, depression
and anxiety. Part II consist of 13 questions about motor experiences
of patient’s daily living such as difficulties with speech, chewing,
handwriting and walking. Part III consists of 18 questions that are
answered by an examiner after assessing patient’s motor functions
such as observing the patient’s facial expressions. For each item, a
number between 0 and 4 is assigned as a rate to indicate the severity
of the corresponding symptom. We use the total MDS-UPDRS score
that is summation of the three scores as a potential target.

Montreal CognitiveAssessment (MoCA) consists of 26 items
that assess cognitive function such as attention, concentration,
memory, language, conceptual thinking and orientation. This test
is widely used as a cognitive screening test in Parkinson’s disease.

SCOPA-AUT: The Scales for Outcomes in Parkinson’s disease
for Autonomic Symptoms (SCOPA- AUT) consists of 21 items that
assess patient’s autonomic problems such as thermoregulatory or
urinary dysfunction.

4.3 Prediction Model
The prediction model uses the features described in the previous
section, measured on each patient, to make prediction about the
status of each patient’s Parkinson’s disease in the future. We use an
appropriate rating score of Parkinson’s disease as targets that are
acquired from the patients repeatedly at multiple time points. By
viewing the prediction of disease score at a single time point as one

Figure 1: The graph structure for capturing the task relation-
ship in Parkinson’s disease. Each node represents an indi-
vidual task and a pair of nodes are connected when the two
corresponding tasks are related. The R matrix for this graph
is expressed in Equation (1).

regression task, we formulate the progression of PD rating score
over several time points in the future as a multi-task regression
problem. Each task is prediction of the target for a group of patients
at each future time point. Consider a total number of k tasks rep-
resenting k time points. For each task i ∈ {1, · · · ,k}, assume that
there are p features and n observations or patients. LetX ∈ Rn×p be
the input data or observation matrix including features measured
at the baseline. The corresponding target matrix containing PD
rating scores of n patients at k time point is denoted by Y ∈ Rn×k .
LetW = [w1, · · · ,wk ] ∈ Rp×k be the model. A linear approach
for learningW is by solving the following regularization problem:
minW ∥XW −Y ∥2F +θ1∥W ∥2F ,where θ1 is the regularization param-
eter controlling the generalization error and ∥.∥F is the Frobenius
norm. The regression problem above, known as ridge regression
does not take into account the relatedness of different tasks and
treats them as independent. However, the status of a patient’s PD
at different consecutive time points are not independent of each
other. To take into account the relatedness of PD scores at various
consecutive times, we add a graph regularization term in the re-
gression model that represents the relationships between tasks in
the multi-task learning formulation [37]. The relationship between
k tasks is represented by a graph, where each task is a node, and
two nodes are connected if the corresponding tasks are related. To
capture the connections, we denote the set of edges in the graph
by E. The graph is encoded using a ∥E∥ × k matrix R, where ∥E∥
is the number of edges. Let eij denote edge i connected to node j,
which is zero if the node is not connected to the edge. If nodes x
and y are connected via edge ei , then eix and eiy are set to 1 and −1,
respectively. ei will then form the ith row of the matrix R, which
is defined as R =

[
e1 e2 · · · e ∥E ∥

]T .
One way of assigning the task relationships is based on the prior

information about the specific problem. In this study, since it is
established that PD is a progressive disease, it is reasonable to con-
sider that the difference between predictions at consecutive time
points is relatively small as the disease deteriorates. This prior in-
formation based on temporal smoothness has been effective for
analyzing Alzheimer’s disease progression which is another neu-
rodegenartive disorder [39]. For the case in this study where each
task is related to its subsequent tasks, we therefore use the graph
structure illustrated in Figure 1. Using this graph and the definition
of R matrix, the corresponding R can be determined as a (k − 1) ×k
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Figure 2: Illustration of the capability of multi-task regres-
sion in handling missing target values

matrix shown below

R =


1 −1 0 . . . 0

0 1 −1 0
...

...
...
. . .

. . . 0
0 0 . . . 1 −1


, (1)

where Ri,i = 1 and Ri,i+1 = −1. Using the R matrix above, the
additional penalty term ∥RWT ∥1 can be defined as ∥RWT ∥1 =∑k−1
i=1 |wi − wi+1 |. This term in the regularization will penalize

large variations of predictions at consecutive time points to help
keep the temporal smoothness. Moreover, it is established in the
past few years that a small subgroup of biomarkers contribute to PD
progression and different biomarkers may be associated to various
stages of the disease [28]. In addition to the graph regularization
term, we therefore use a group Lasso penalty defined as

∥W ∥2,1 =

p∑
i=1

√√√√ k∑
j=1

W 2
i j (2)

to incorporate features common among different tasks. We also in-
tegrate features specific to each particular task using Lasso penalty.
The final optimization problem can therefore be represented as:

min
W

∥XW − Y ∥2F + θ1∥RW
T ∥1 + θ2∥W ∥2,1 + θ3∥W ∥1. (3)

This formulation is called convex fused sparse group Lasso (cFSGL)
[38]. The optimization problem above is solved using accelerated
gradient method (AGM). We applied the technique included in
the MALSAR package [37] to efficiently solve the optimization.
For comparison, we also implement temporal group Lasso (TGL)
proposed in [39] expressed in the following formulation:

min
W

∥XW − Y ∥2F + θ1∥RW
T ∥2 + θ2∥W ∥2,1 + θ3∥W ∥2. (4)

Table 1: Complete list of features analyzed in this study

Type Features
Cerebral Spinal Fluid (CSF): Aβ1-42, T-tau, P-
tau181, α−Syn, T-tau/Aβ1-42, P-tau181/Aβ1-
42, P-tau181/T-tau

Biologic
specimens

RNA: DHPR, DJ-1, FBXO7-001, FBXO7-
005, FBXO7-007, FBXO7-008, FBXO7-010,
GLT25D1, GUSB, MON1B, RPL13, SNCA-007,
SNCA-3UTR-1, SNCA-3UTR-2, SNCA-E3E4,
SNCA-E4E6, SRCAP, UBC, ZNF746
Plasma: Total Cholesterol, ApoA1, EGF, HDL,
LDL, , Triglycerides
Serum: IFG-1

Clinical UPSIT, RBDSQ, MDS-UPDRSassessments

Brain imaging SBR caudate right, SBR putamen right, SBR
caudate left, SBR putamen right

4.4 Missing Targets
The PD rating scores for many patients are missing at some visits,
resulting in missing values in target matrix Y . One solution is
to completely remove from the experiment each patient that has
missing target values in at least one visit. This approach results in
a considerably decreased number of observations. However, the
multi-task learning formulation described in Section 4.3 is capable
of handling missing values in targets since it does not necessarily
require the tasks to have the same number of observations. The
samematrix of features measured at the baselineX is used to predict
the target values at all future time points. Hence, the samples with
missing target values in one task can be removed only from the
feature matrix used to estimate target values of the corresponding
task. In other words, if a patient’s target score is missing at one
visit, the features measured on that patient in the baseline will
be removed from only the feature matrix of that task, without
causing problem forW matrix. Figure 2 demonstrates how multi-
task regression can handle missing target values.

5 EXPERIMENTAL RESULTS
We now present the findings of our experiments. We first report
the disease prediction or prognosis performance in Section 5.1.
We then investigate the disease diagnosis by inspecting the model
to understand the contributions that each feature makes towards
prediction of the disease status, and the performance of different
feature categories.

First, we analyze the capability of potential targets described in
Section 4.2 including MDS-UPRDS, MoCA and SCOPA-AUT for
assessment of Parkinson’s disease status. There is no valid ground
truth information about the severity of disease. However, we need
to evaluate if these scores are correct measures of disease status.
Since PPMI dataset includes definite diagnosis indicating PD and
control patients, we use that information in order to validate which
score can be used for measuring disease severity. If a score is not
useful in differentiating between patients with PD and healthy
control subjects, it cannot be used as a measure of disease condition.
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Table 2: Number of observations (patients) in different visits
forMDS-UPDRS using CSF features and all features (CSF+A)
together with the data dimensionality (Dim) denoting the
number of features.

Source V01 V02 V03 V04 V05 V06
CSF 373 274 324 352 356 349
CSF+A 99 101 92 99 97 85
Source V07 V08 V09 V10 V11 Dim
CSF 351 347 285 208 128 7
CSF+A 91 94 91 79 46 40

Figure 3 shows the histogram with overlaid normal and kernel
densities and the box plot for each of the potential targets discussed
in Section 4.2 for the control and PD subjects groups. In the box
plots, the symbol marker represents the mean score, and the left
and right edges of the box represent the first and third quartiles.
The ends of the whiskers show the most extreme score value not
considered outliers and a point is considered an outlier if it is more
than 1.5 ∗ (q3 − q1) above q3 or below q1 percentile, where q1 and
q3 are the 25th and 75th percentiles, respectively. With p-value of
p < 0.0001, MDS-UPDRS is significantly different for patients with
PD and control group. However, as it is clear in Figure 3, MoCA
and SCOPA-AUT are not significantly different for control and PD
with large overlaps between the histograms for the two groups.
Accordingly, we only use MDS-UPDRS score as target for prediction
of PD status.

The complete list of features used in this study is shown in Table
1. We include the MDS-UPDRS score measured at baseline in the
feature matrix since it is correlated with the future MDS-UPDRS
scores and can help their prediction.We use CSF and combination of
CSF with other features (CSF+A) at baseline to predict MDS-UPDRS
score for 11 future visits happening during 4.5 years after the initial
screening visit. In theX matrix, we remove samples with at least one
missing feature. As a result, the feature set includes the intersection
of available samples, such that the merged feature matrix has no
missing values. With the described feature engineering process, the
number of observations available for predicting MDS-UPDRS using
CSF and CSF+A at all 11 visits are shown in Table 2.

5.1 Prognosis: Prediction Performance
In this Section, we apply the multi-task learning models including
convex fused sparse group Lasso (cFSGL) presented in Equation
(3) and temporal group Lasso (TGL) in Equation (4) to the features
outlined in the Section 4.2, measured from each patient, to make
predictions about the status of PD in each patient’s future timelines.
We also include the results from nonconvex fused sparse group
Lasso (nFSGL) formulation from [38] for a complete comparison.
We compare the results with two single learner methods including
ridge regression and Lasso on the prediction of MDS-UPDRS using
different feature combinations, namely CSF and CCSF+A. For each
feature combination, we randomly split the data into training and
testing sets. We use train to test ratios of 9:1 for CSF and 7:3 for
CSF+A datasets. The reason for using a larger test to train ratio in
CSF+A dataset is fairly small number of observations in this dataset
after removing missing features, as shown in Table (2). We use

Figure 3: The histogram of MDS-UPDRS, MoCA and SCOPA-
AUT values for patients with PD and control group. Over-
laid normal and kernel densities and the box plot are also
shown for each of the potential targets for the control and
PD groups.MDS-UPDRS is significantly different for PD and
control (p < 0.001). MoCA and SCOPA-AUT are not signif-
icantly different in PD and control and cannot be used as
target measurements of disease status.
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Figure 4: Comparison of different multi-task learning approaches (TGL, cFSGL, nSFGL) with single learner approaches (ridge
regression andLasso) on longitudinalMDS-UPDRSprediction using different feature combinations. The left and right columns
show prediction results using only CSF feature and all features (CSF+A), respectively. The top and bottom row show RMSE
and NMSE, respectively. Each task represents a visit and 11 visits are performed over 4.5 years.

Table 3: Comparison of TGL, cFSGL and nSFGL with ridge and Lasso onMDS-UPDRS prediction using CSF and CSF+A features
in terms of average and standard deviation of RMSE and NMSE over all tasks.

CSF Ridge Lasso TGL cFSGL nFSGL
RMSE 0.245±0.046 0.259±0.038 0.210± 0.057 0.210± 0.054 0.212±0.052
NMSE 0.148± 0.025 0.161±0.017 0.103±0.032 0.106±0.035 0.110±0.035

CSF+A Ridge Lasso TGL cFSGL nFSGL
RMSE 0.259± 0.035 0.262±0.035 0.195 ± 0.030 0.192 ±0.036 0.208 ±0.045
NMSE 0.158±0.029 0.165±0.029 0.087 ± 0.016 0.086 ±0.018 0.105 ± 0.023

5-fold cross validation to select the model parameters θ1,θ2 and θ3
in each of the Equations (3) and (4) in the training data. Normalized
Root Mean Square Error (RMSE) and Normalized Mean Squared
Error (NMSE) are employed for performance evaluation as widely

used in multi-task learning studies [36, 38]. The experimental re-
sults for each of the 11 tasks on CSF and CSF+A using different
methods mentioned above are included in Figure 4. Additionally,
the results for overall performance of the prediction averaged across
all visits are summarized in Table 3, where the mean and standard
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deviation of RMSE and NMSE are obtained using 100 repetitions of
experiments on various splits of data into train and test sets.

We have the following observations regarding the prediction
of PD progression: Our results show that we can accurately pre-
dict the future status of the Parkinson’s disease for up to 4.5 years
using multi-task learning. We also show that all the tested multi-
task learning approaches (TGL, cFGL and nFSGL) significantly
outperform single learner methods (ridge and Lasso) in each task
as illustrated in Figure 4 and over all tasks as shown in Table 3.
Our results also demonstrate that cFSGL has the best performance
among the implemented methods for prediction of PD progression.
Moreover, all three multi task learning methods perform better
in CSF+A dataset compared to CSF dataset, while single learner
methods show higher error in CSF+A. The reason is that the feature
space is larger and the number of observations is smaller in CSF+A
compared to CSF (see Table 2) and multi-task learning expands the
size of sample set by simultaneously learning multiple tasks. On
the other hand, ridge and lasso approach each task independent of
the others and suffer from smaller number of observations. These
results show that the future status of PD can be predicted more
accurately by including all the features and using multi-task learn-
ing even with a smaller sample size. Therefore, it is better to have
complete measurements from less patients in the clinical trail than
only collecting cerebral spinal fluid from much larger number of
patients.

5.2 Diagnosis: Feature Contributions
In addition to the progression prediction, we are interested in iden-
tifying the biomarkers that are most predictive of the status of
Parkinson’s disease. We first experiment with different sets of fea-
tures separately, i.e. CSF, clinical assessments and brain imaging,
serum and plasma, and RNA. This helps identifying important
biomarkers to be used for diagnosis and prognosis of PD when
measurements from limited categories are available. We next use all
the features listed in Table 1 to identify the most overall important
PD biomarkers. We obtained the weight assigned to each feature
from the learned multi-task regression model. Figure 5 shows the
features with highest weight, along with their weights relative to
the top-ranked feature in each group. We have the following ob-
servations regarding the feature contributions for prediction of PD
progression: The first plot is obtained by including only CSF fea-
tures and shows that α-Syn is the most important CSF biomarker.
The potential use of α-Syn as a candidate biomarker for differenti-
ating PD patients from healthy subjects is shown in [16]. Moreover,
the evidence of a link between α-Syn at baseline and motor symp-
toms and cognitive speed over 2 years in PD is recently reported
in [8]. However, validation of CSF α-Syn as a biomarker for PD is
still an ongoing area of research. Our results validate that α-Syn
is the most predictive biomaker of PD among CSF measurements.
Moreover, T-tau, T-tau/Aβ1-42, P-tau181 and P-tau181/Aβ1-42 are
characterized in our study as the next most important CSF mark-
ers. The study in [25] specifies the same set of CSF biomarkers
as important features for differentiating between PD patients and
healthy controls. We discover that the same set of CSF biomarkers
are also predictive of PD status for up to 4.5 years but with different
weights.

Figure 5: Feature contribution results with CSF, clinical as-
sessments and brain imaging, serum and plasma, RNA and
all the features as inputs.

Our feature contribution results on the second plot are obtained
by using clinical assessments and brain imaging features and illus-
trates that SBR calculated on left and right putamen are the most
important biomarkers in this group for prediction of PD and UPSIT
assessment is the next significant feature. These results are also
consistent with the feature contribution in differentiating between
PD and control patients at baseline in [25].

The third plot in Figure 5 shows that total cholesterol is the
biomarker with strongest contribution in prediction of PD among
serum and plasma biomarkers and we identified the direction to
be negative. Interestingly, a recent study published in Movement
Disorders journal examined the relation of plasma lipids to Parkin-
son’s disease in a 25 year long study with 15,792 participants and
found that higher total cholesterol may be associated with lower
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risk of PD [12]. However, total cholesterol is still not a validated
biomarker of PD. In this study, we discovered and validated that
total cholesterol is an important biomarker negatively related to
progression of PD. Moreover, we identified LDL as next most im-
portant biomarker in the group of plasma and serum. LDL levels
are suggested to be associated inversely with PD in [11], but the
cause and effect has not been shown in that study. We validate in
this study that LDL is a significant plasma biomarker of PD.

As illustrated in the fourth plot in Figure 5, we discover SCNA-
3UTR (3′ untranslated region of SNCA gene) as the most promising
RNA biomarker for prediction of PD. Interestingly, this biomarker
has been linked to PD in a few recent genome-wide association
studies [27, 30]. In fact, the SNCA gene provides instructions for
making α-syn protein. We validate the significance of SCNA-3UTR
α-syn in this study using a multi-task learning framework. The
last plot in Figure 5 is obtained by including all the features in the
model and shows that besides the important biomarkers discussed
above, other RNA biomarkers including GUSB, DJ-1, FBXO7 and
the serum biomarker IGF1 are also predictive of PD progression
with weaker effects.

6 CONCLUSION
We studied the prediction of Parkinson’s disease progression mea-
sured by unified PD rating scale (UPDRS) using baseline measure-
ments of biologic specimen, clinical assessments and brain imaging.
We particularly use a multi-task learning model where the predic-
tion of disease status at each future visit is viewed as a task. We
use a graph regularization term in the multi task regression to take
into account the relatedness of PD severity at different consecutive
visits and to guarantee relatively small variations between two
successive visits. We performed extensive experiments on the PPMI
database using different combinations of features. We also com-
pared the results with single learner methods that do not benefit
form the tasks relationships by considering different tasks inde-
pendently. The results show that multi-task learning approaches
outperform single learner methods in predicting the progression
of PD. We also discovered a combination of RNA markers, plasma,
brain imaging, CSF measurements and non-motor assessments as
important biomarkers for prediction of PD progression. Specifically,
SCNA-3UTR, total cholesterol, SBR in left and right putamen, α-
Syn, GUSB, DJ-1 and UPSIT are identified as significant diagnostic
biomarkers. We found evidence that some recent medical, genetic
and neurological studies have pointed to some of our identified
biomarkers such as total cholesterol, SNCA-3UTR and α-Syn. Our
study validates those biomarkers and discovers new biomearkers
that have not yet been reported.

The future work will focus on dealing with missing features
since the current method requires a complete input matrix and
observations with missing features need to be removed from the
study. This is not a practical solution since it reduces the sample
size and makes the framework unable to predict the future disease
status for a patient with incomplete measurements.
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